Entropy conditions for scalar conservation laws with discontinuous flux revisited
Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 6, p. 1307-1335
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

We propose new entropy admissibility conditions for multidimensional hyperbolic scalar conservation laws with discontinuous flux which generalize one-dimensional Karlsen–Risebro–Towers entropy conditions. These new conditions are designed, in particular, in order to characterize the limit of vanishing viscosity approximations. On the one hand, they comply quite naturally with a certain class of physical and numerical modeling assumptions; on the other hand, their mathematical assessment turns out to be intricate.The generalization we propose is not only with respect to the space dimension, but mainly in the sense that the “crossing condition” of Karlsen, Risebro, and Towers (2003) [31] is not mandatory for proving uniqueness with the new definition. We prove uniqueness of solutions and give tools to justify their existence via the vanishing viscosity method, for the multi-dimensional spatially inhomogeneous case with a finite number of Lipschitz regular hypersurfaces of discontinuity for the flux function.

DOI : https://doi.org/10.1016/j.anihpc.2014.08.002
Classification:  35L65,  35L67
Keywords: Inhomogeneous scalar conservation law, Discontinuous flux, Entropy solution, Vanishing viscosity approximation, Well-posedness, Crossing condition
@article{AIHPC_2015__32_6_1307_0,
     author = {Andreianov, Boris and Mitrovi\'c, Darko},
     title = {Entropy conditions for scalar conservation laws with discontinuous flux revisited},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {32},
     number = {6},
     year = {2015},
     pages = {1307-1335},
     doi = {10.1016/j.anihpc.2014.08.002},
     zbl = {1343.35158},
     mrnumber = {3425264},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2015__32_6_1307_0}
}
Andreianov, Boris; Mitrović, Darko. Entropy conditions for scalar conservation laws with discontinuous flux revisited. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 6, pp. 1307-1335. doi : 10.1016/j.anihpc.2014.08.002. http://www.numdam.org/item/AIHPC_2015__32_6_1307_0/

[1] Adimurthi, R. Dutta, S.S. Ghoshal, G.D. Veerappa Gowda, Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Commun. Pure Appl. Math. 64 no. 1 (2011), 84 -115 | MR 2743877 | Zbl 1223.35222

[2] Adimurthi, G.D. Veerappa Gowda, Conservation laws with discontinuous flux, J. Math. Kyoto Univ. 43 (2003), 27 -70 | MR 2028700 | Zbl 1063.35114

[3] Adimurthi, S. Mishra, G.D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux functions, J. Hyperbolic Differ. Equ. 2 (2005), 783 -837 | MR 2195983 | Zbl 1093.35045

[4] Adimurthi, S. Mishra, G.D. Veerappa Gowda, Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes, Netw. Heterog. Media 2 (2007), 127 -157 | MR 2291815 | Zbl 1142.35508

[5] J. Aleksić, D. Mitrović, On the compactness for two dimensional scalar conservation law with discontinuous flux, Commun. Math. Sci. 4 (2009), 963 -971 | MR 2604627 | Zbl 1190.35148

[6] J. Aleksić, D. Mitrović, Strong traces for averaged solutions of heterogeneous ultra-parabolic transport equations, J. Hyperbolic Differ. Equ. 10 no. 4 (2013), 659 -676 | MR 3163403 | Zbl 1288.35320

[7] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Univ. Press, New York (2000) | MR 1857292 | Zbl 0957.49001

[8] B. Andreianov, C. Cancès, Vanishing capillarity solutions of Buckley–Leverett equation with gravity in two-rocks medium, Comput. Geosci. 17 no. 3 (2013), 551 -572 | MR 3050006

[9] B. Andreianov, C. Cancès, On interface transmission conditions for conservation laws with discontinuous flux of general shape, hal.archives-ouvertes.fr/hal-00940756 (2014) | Zbl 1336.35230

[10] B. Andreianov, K.H. Karlsen, N.H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux, Netw. Heterog. Media 5 no. 3 (2010), 617 -633 | MR 2670658 | Zbl 1270.35305

[11] B. Andreianov, K.H. Karlsen, N.H. Risebro, A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal. 201 (2011), 27 -86 | MR 2807133 | Zbl 1261.35088

[12] E. Audusse, B. Perthame, Uniqueness for scalar conservation law via adapted entropies, Proc. R. Soc. Edinb. A 135 (2005), 253 -265 | MR 2132749 | Zbl 1071.35079

[13] F. Bachmann, J. Vovelle, Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients, Commun. Partial Differ. Equ. 31 (2006), 371 -395 | MR 2209759 | Zbl 1102.35064

[14] P. Baiti, H.K. Jenssen, Well-posedness for a class of 2×2 conservation laws with L data, J. Differ. Equ. 140 no. 1 (1997), 161 -185 | MR 1473859 | Zbl 0892.35097

[15] M. Bendahmane, K.H. Karlsen, Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations, SIAM J. Math. Anal. 36 no. 2 (2004), 405 -422 | MR 2111783 | Zbl 1090.35104

[16] M. Bulicek, P. Gwiazda, A. Świerczewska-Gwiazda, Multi-dimensional scalar conservation laws with fluxes discontinuous in the unknown and the spatial variable, Math. Models Methods Appl. Sci. 3 (2013), 407 -439 | MR 3010835 | Zbl 1270.35307

[17] R. Burger, K.H. Karlsen, J. Towers, A model of continuous sedimentation of flocculated suspensions in clarifier-thickener units, SIAM J. Appl. Math. 65 no. 3 (2005), 882 -940 | MR 2136036 | Zbl 1089.76061

[18] R. Burger, K.H. Karlsen, J. Towers, On Enquist–Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal. 3 (2009), 1684 -1712 | MR 2505870 | Zbl 1201.35022

[19] R. Burger, K.H. Karlsen, J. Towers, A conservation law with discontinuous flux modelling traffic flow with abruptly changing road surface conditions, Hyperbolic Problems: Theory, Numerics and Applications, Part 2, Proc. Symp. Appl. Math. vol. 67 , Amer. Math. Soc., Providence (2009), 455 -464 | Zbl 1186.35005

[20] J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal. 147 no. 4 (1999), 269 -361 | MR 1709116 | Zbl 0935.35056

[21] G. Chavent, G. Cohen, J. Jaffré, A finite-element simulator for incompressible two-phase flow, Transp. Porous Media 2 (1987), 465 -478

[22] G. Crasta, V. De Cicco, G. De Philippis, Kinetic formulation and uniqueness for scalar conservation laws with discontinuous flux, arXiv:1404.5837 (2014) | MR 3299353 | Zbl 1326.35197

[23] S. Diehl, On scalar conservation law with point source and discontinuous flux function modelling continuous sedimentation, SIAM J. Math. Anal. 6 (1995), 1425 -1451 | MR 1356452 | Zbl 0852.35094

[24] S. Diehl, A conservation law with point source and discontinuous flux function modelling continuous sedimentation, SIAM J. Appl. Math. 56 no. 2 (1996), 388 -419 | MR 1381652 | Zbl 0849.35142

[25] S. Diehl, A uniqueness condition for non-linear convection–diffusion equations with discontinuous coefficients, J. Hyperbolic Differ. Equ. 6 (2009), 127 -159 | MR 2512505 | Zbl 1180.35305

[26] T. Gimse, N.H. Risebro, Riemann problems with discontinuous flux function, Proc. 3rd Int. Conf. Hyperbolic Problems Studentlitteratur, Uppsala (1991), 488 -502 | MR 1109304 | Zbl 0789.35102

[27] J. Jimenez, Mathematical analysis of a scalar multidimensional conservation law with discontinuous flux, J. Evol. Equ. 11 no. 3 (2011), 553 -576 | MR 2827100 | Zbl 1232.35094

[28] J. Jimenez, L. Lévi, Entropy formulations for a class of scalar conservations laws with space-discontinuous flux functions in a bounded domain, J. Eng. Math. 60 no. 3–4 (2008), 319 -335 | MR 2396487 | Zbl 1133.74030

[29] E. Kaasschieter, Solving the Buckley–Leverett equation with gravity in a heterogeneous porous media, Comput. Geosci. 3 (1999), 23 -48 | MR 1696184 | Zbl 0952.76085

[30] K.H. Karlsen, S. Mishra, N.H. Risebro, Convergence of finite volume schemes for triangular systems of conservation laws, Numer. Math. 111 no. 4 (2009), 559 -589 | MR 2471610 | Zbl 1190.65133

[31] K.H. Karlsen, N.H. Risebro, J. Towers, L 1 -stability for entropy solutions of nonlinear degenerate parabolic connection–diffusion equations with discontinuous coefficients, Skr. - K. Nor. Vidensk. Selsk. 3 (2003), 1 -49 | Zbl 1036.35104

[32] K. Karlsen, J. Towers, Convergence of the Lax–Friedrichs scheme and stability for conservation laws with a discontinuous space–time dependent flux, Chin. Ann. Math., Ser. B 3 (2004), 287 -318 | MR 2086124 | Zbl 1112.65085

[33] S.N. Kruzhkov, First order quasilinear equations in several independent variables, Mat. Sb. 81 (1970), 217 -243 | Zbl 0215.16203

[34] D. Mitrovic, New entropy conditions for scalar conservation laws with discontinuous flux, Discrete Contin. Dyn. Syst. 30 (2011), 1191 -1210 | MR 2812961 | Zbl 1228.35144

[35] D. Mitrovic, Proper entropy conditions for scalar conservation laws with discontinuous flux, (2012)

[36] F. Otto, L 1 -contraction and uniqueness for quasilinear elliptic–parabolic equations, J. Differ. Equ. 131 no. 1 (1996), 20 -38 | MR 1415045 | Zbl 0862.35078

[37] E.Yu. Panov, Existence of strong traces for generalized solutions of multidimensional scalar conservation laws, J. Hyperbolic Differ. Equ. 2 (2005), 885 -908 | MR 2195985 | Zbl 1145.35429

[38] E.Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ. 4 (2007), 729 -770 | MR 2374223 | Zbl 1144.35037

[39] E.Yu. Panov, On existence and uniqueness of entropy solutions to the Cauchy problem for a conservation law with discontinuous flux, J. Hyperbolic Differ. Equ. 3 (2009), 525 -548 | MR 2568808 | Zbl 1181.35145

[40] E.Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux, Arch. Ration. Mech. Anal. 195 (2010), 643 -673 | MR 2592291 | Zbl 1191.35102

[41] N. Seguin, J. Vovelle, Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients, Math. Models Methods Appl. Sci. 13 no. 2 (2003), 221 -257 | MR 1961002 | Zbl 1078.35011

[42] J.D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous flux, SIAM J. Numer. Anal. 38 no. 2 (2000), 681 -698 | MR 1770068 | Zbl 0972.65060

[43] J.D. Towers, A difference scheme for conservation laws with a discontinuous flux: the nonconvex case, SIAM J. Numer. Anal. 39 no. 4 (2001), 1197 -1218 | MR 1870839 | Zbl 1055.65104

[44] G. Vallet, Dirichlet problem for a degenerated hyperbolic–parabolic equation, Adv. Math. Sci. Appl. 15 no. 2 (2005), 423 -450 | MR 2198570 | Zbl 1103.35058