The goal of this article is to show a local exact controllability to smooth (
@article{AIHPC_2016__33_2_529_0, author = {Badra, Mehdi and Ervedoza, Sylvain and Guerrero, Sergio}, title = {Local controllability to trajectories for non-homogeneous incompressible {Navier{\textendash}Stokes} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {529--574}, publisher = {Elsevier}, volume = {33}, number = {2}, year = {2016}, doi = {10.1016/j.anihpc.2014.11.006}, zbl = {1339.35207}, mrnumber = {3465385}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2014.11.006/} }
TY - JOUR AU - Badra, Mehdi AU - Ervedoza, Sylvain AU - Guerrero, Sergio TI - Local controllability to trajectories for non-homogeneous incompressible Navier–Stokes equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 529 EP - 574 VL - 33 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2014.11.006/ DO - 10.1016/j.anihpc.2014.11.006 LA - en ID - AIHPC_2016__33_2_529_0 ER -
%0 Journal Article %A Badra, Mehdi %A Ervedoza, Sylvain %A Guerrero, Sergio %T Local controllability to trajectories for non-homogeneous incompressible Navier–Stokes equations %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 529-574 %V 33 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2014.11.006/ %R 10.1016/j.anihpc.2014.11.006 %G en %F AIHPC_2016__33_2_529_0
Badra, Mehdi; Ervedoza, Sylvain; Guerrero, Sergio. Local controllability to trajectories for non-homogeneous incompressible Navier–Stokes equations. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 2, pp. 529-574. doi : 10.1016/j.anihpc.2014.11.006. https://www.numdam.org/articles/10.1016/j.anihpc.2014.11.006/
[1] Carleman estimates and boundary observability for a coupled parabolic–hyperbolic system, Electron. J. Differ. Equ., Volume 22 (2000) 15 pp. (electronic) | MR | Zbl
[2] Trace theorems and spatial continuity properties for the solutions of the transport equation, Differ. Integral Equ., Volume 18 (2005) no. 8, pp. 891–934 | MR | Zbl
[3] Outflow boundary conditions for the incompressible non-homogeneous Navier–Stokes equations, Discrete Contin. Dyn. Syst., Ser. B, Volume 7 (2007) no. 2, pp. 219–250 (electronic) | MR | Zbl
[4] Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, Applied Mathematical Sciences, vol. 183, Springer, New York, 2013 | DOI | MR | Zbl
[5] Null controllability of a system of viscoelasticity with a moving control | arXiv | DOI | Zbl
[6] On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions, ESAIM Control Optim. Calc. Var., Volume 1 (1995/96), pp. 35–75 (electronic) | Numdam | MR | Zbl
[7] On the controllability of 2-D incompressible perfect fluids, J. Math. Pures Appl. (9), Volume 75 (1996) no. 2, pp. 155–188 | MR | Zbl
[8] Global exact controllability of the 2D Navier–Stokes equations on a manifold without boundary, Russ. J. Math. Phys., Volume 4 (1996) no. 4, pp. 429–448 | MR | Zbl
[9] Linear transport equations with initial values in Sobolev spaces and application to the Navier–Stokes equations, Differ. Integral Equ., Volume 10 (1997) no. 3, pp. 577–586 | MR | Zbl
[10] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511–547 | DOI | MR | Zbl
[11] Local exact controllability for the one-dimensional compressible Navier–Stokes equation, Arch. Ration. Mech. Anal., Volume 206 (2012) no. 1, pp. 189–238 | DOI | MR | Zbl
[12] Motivation, analysis and control of the variable density Navier–Stokes equations, Discrete Contin. Dyn. Syst., Ser. S, Volume 5 (2012) no. 6, pp. 1021–1090 | MR | Zbl
[13] Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., Volume 45 (2006) no. 4, pp. 1399–1446 (electronic) | DOI | MR | Zbl
[14] Local exact controllability of the Navier–Stokes system, J. Math. Pures Appl. (9), Volume 83 (2004) no. 12, pp. 1501–1542 | DOI | MR | Zbl
[15] Some controllability results for the N-dimensional Navier–Stokes and Boussinesq systems with
[16] Exact controllability of the Navier–Stokes and Boussinesq equations, Usp. Mat. Nauk, Volume 54 (1999) no. 3(327), pp. 93–146 | MR | Zbl
[17] Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 1996 | MR | Zbl
[18] Local exact boundary controllability of the Boussinesq equation, SIAM J. Control Optim., Volume 36 (1998) no. 2, pp. 391–421 | DOI | MR | Zbl
[19] Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer, Berlin, 1986 | MR | Zbl
[20] Exact boundary controllability of 3-D Euler equation, ESAIM Control Optim. Calc. Var., Volume 5 (2000), pp. 1–44 (electronic) | DOI | Numdam | MR | Zbl
[21] Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation, Commun. Pure Appl. Anal., Volume 8 (2009) no. 1, pp. 311–333 | MR | Zbl
[22] Remarks on exact controllability for the Navier–Stokes equations, ESAIM Control Optim. Calc. Var., Volume 6 (2001), pp. 39–72 (electronic) | DOI | Numdam | MR | Zbl
[23] Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems, Int. Math. Res. Not., Volume 16 (2003), pp. 883–913 | MR | Zbl
[24] Carleman estimates for parabolic equations with nonhomogeneous boundary conditions, Chin. Ann. Math., Ser. B, Volume 30 (2009) no. 4, pp. 333–378 | DOI | MR | Zbl
[25] Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci., Volume 39 (2003) no. 2, pp. 227–274 | DOI | MR | Zbl
[26] Null controllability of the structurally damped wave equation with moving control, SIAM J. Control Optim., Volume 51 (2013) no. 1, pp. 660–684 | DOI | MR | Zbl
[27] Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts, vol. XI, Springer, 2009 | MR | Zbl
[28] Log-Lipschitz regularity and uniqueness of the flow for a field in
Cité par Sources :