In this paper we give the first example of a non-dynamically coherent partially hyperbolic diffeomorphism with one-dimensional center bundle. The existence of such an example had been an open question since 1975 [2].
@article{AIHPC_2016__33_4_1023_0, author = {Rodriguez Hertz, F. and Rodriguez Hertz, M.A. and Ures, R.}, title = {A non-dynamically coherent example on $ {\mathbb{T}}^{3}$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1023--1032}, publisher = {Elsevier}, volume = {33}, number = {4}, year = {2016}, doi = {10.1016/j.anihpc.2015.03.003}, mrnumber = {3519530}, zbl = {1380.37067}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.003/} }
TY - JOUR AU - Rodriguez Hertz, F. AU - Rodriguez Hertz, M.A. AU - Ures, R. TI - A non-dynamically coherent example on $ {\mathbb{T}}^{3}$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 1023 EP - 1032 VL - 33 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.003/ DO - 10.1016/j.anihpc.2015.03.003 LA - en ID - AIHPC_2016__33_4_1023_0 ER -
%0 Journal Article %A Rodriguez Hertz, F. %A Rodriguez Hertz, M.A. %A Ures, R. %T A non-dynamically coherent example on $ {\mathbb{T}}^{3}$ %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 1023-1032 %V 33 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.003/ %R 10.1016/j.anihpc.2015.03.003 %G en %F AIHPC_2016__33_4_1023_0
Rodriguez Hertz, F.; Rodriguez Hertz, M.A.; Ures, R. A non-dynamically coherent example on $ {\mathbb{T}}^{3}$. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 4, pp. 1023-1032. doi : 10.1016/j.anihpc.2015.03.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.003/
[1] Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus, J. Mod. Dyn., Volume 3 (2009), pp. 1–11 | MR | Zbl
[2] Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 38 (1974), pp. 170–212 | MR | Zbl
[3] Dynamical coherence, accessibility and center bunching, Discrete Contin. Dyn. Syst., Volume 22 (2008), pp. 89–100 | MR | Zbl
[4] A. Hammerlindl, R. Potrie, Classification of partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group, preprint. | MR
[5] Invariant Manifolds, Lect. Notes Math., vol. 583, Springer-Verlag, Berlin–New York, 1977 | DOI | MR | Zbl
[6] R. Potrie, Partial hyperbolicity and foliations in , preprint, 2012. | MR
[7] Tori with hyperbolic dynamics in 3-manifolds, J. Mod. Dyn., Volume 5 (2011), pp. 185–202 | MR | Zbl
[8] Partial hyperbolicity and ergodicity in dimension three, J. Mod. Dyn., Volume 2 (2008), pp. 187–208 | MR | Zbl
[9] F. Rodriguez Hertz, J. Rodriguez Hertz, R. Ures, Center-unstable foliations do not have compact leaves, preprint. | MR
[10] Topologically transitive diffeomorphisms on , Lect. Notes Math., Volume 206 (1971), pp. 39–40 | DOI
[11] Differentiable dynamical systems, Bull. Am. Math. Soc., Volume 73 (1967), pp. 747–817 | DOI | MR | Zbl
[12] Stable ergodicity of the time-one map of a geodesic flow, Ergod. Theory Dyn. Syst., Volume 18 (1998), pp. 1545–1587 | DOI | MR | Zbl
Cité par Sources :