A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 6, pp. 1519-1538.

We consider the scalar semilinear heat equation utΔu=f(u), where f:[0,)[0,) is continuous and non-decreasing but need not be convex. We completely characterise those functions f for which the equation has a local solution bounded in Lq(Ω) for all non-negative initial data u0Lq(Ω), when ΩRd is a bounded domain with Dirichlet boundary conditions. For q(1,) this holds if and only if limsupss(1+2q/d)f(s)<; and for q=1 if and only if 1s(1+2/d)F(s)ds<, where F(s)=sup1tsf(t)/t. This shows for the first time that the model nonlinearity f(u)=u1+2q/d is truly the ‘boundary case’ when q(1,), but that this is not true for q=1.

The same characterisations hold for the equation posed on the whole space Rd provided that limsups0f(s)/s<.

DOI : 10.1016/j.anihpc.2015.06.005
Mots-clés : Semilinear heat equation, Dirichlet problem, Local existence, Non-existence, Instantaneous blow-up, Dirichlet heat kernel
@article{AIHPC_2016__33_6_1519_0,
     author = {Laister, R. and Robinson, J.C. and Sier\.z\k{e}ga, M. and Vidal-L\'opez, A.},
     title = {A complete characterisation of local existence for semilinear heat equations in {Lebesgue} spaces},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1519--1538},
     publisher = {Elsevier},
     volume = {33},
     number = {6},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.06.005},
     zbl = {1349.35169},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2015.06.005/}
}
TY  - JOUR
AU  - Laister, R.
AU  - Robinson, J.C.
AU  - Sierżęga, M.
AU  - Vidal-López, A.
TI  - A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1519
EP  - 1538
VL  - 33
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2015.06.005/
DO  - 10.1016/j.anihpc.2015.06.005
LA  - en
ID  - AIHPC_2016__33_6_1519_0
ER  - 
%0 Journal Article
%A Laister, R.
%A Robinson, J.C.
%A Sierżęga, M.
%A Vidal-López, A.
%T A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1519-1538
%V 33
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2015.06.005/
%R 10.1016/j.anihpc.2015.06.005
%G en
%F AIHPC_2016__33_6_1519_0
Laister, R.; Robinson, J.C.; Sierżęga, M.; Vidal-López, A. A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 6, pp. 1519-1538. doi : 10.1016/j.anihpc.2015.06.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2015.06.005/

[1] Baras, P.; Cohen, L. Complete blow-up after Tmax for the solution of a semilinear heat equation, J. Funct. Anal., Volume 71 (1987), pp. 142–174 | DOI | Zbl

[2] Baras, P.; Pierre, M. Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985), pp. 185–212 | DOI | Numdam | Zbl

[3] Brezis, H.; Cazenave, T. A nonlinear heat equation with singular initial data, J. Anal. Math., Volume 68 (1996), pp. 277–304 | DOI | Zbl

[4] Brezis, H.; Cazenave, T.; Martel, Y.; Ramiandrisoa, A. Blow up for utΔu=g(u) revisited, Adv. Differ. Equ., Volume 1 (1996), pp. 73–90 | Zbl

[5] Brezis, H.; Friedman, A. Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl., Volume 62 (1983), pp. 73–97 | Zbl

[6] Celik, C.; Zhou, Z. No local L1 solution for a nonlinear heat equation, Commun. Partial Differ. Equ., Volume 28 (2003), pp. 1807–1831 | DOI | Zbl

[7] Friedman, A.; McLeod, B. Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., Volume 34 (1985), pp. 425–447 | DOI | Zbl

[8] Fujita, H. On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α , J. Fac. Sci. Univ. Tokyo Sect. I, Volume 13 (1966), pp. 109–124 | Zbl

[9] Galaktionov, V.; Vázquez, J.L. The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Dyn. Syst., Volume 8 (2002), pp. 399–433 | DOI | Zbl

[10] Giga, Y. Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier–Stokes system, J. Differ. Equ., Volume 62 (1986), pp. 186–212 | DOI | Zbl

[11] Haraux, A.; Weissler, F.B. Non-uniqueness for a semilinear initial value problem, Indiana Univ. Math. J., Volume 31 (1982), pp. 167–189 | DOI | Zbl

[12] Kaplan, S. On the growth of solutions of quasi-linear parabolic equations, Commun. Pure Appl. Math., Volume 16 (1963), pp. 305–330 | DOI | Zbl

[13] Ladyzhenskaja, O.A.; Solonnikov, V.A.; Ural'ceva, N.N. Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23, American Mathematical Society, Providence, RI, 1968 | DOI | Zbl

[14] Laister, R.; Robinson, J.C.; Sierżęga, M. Non-existence of local solutions for semilinear heat equations of Osgood type, J. Differ. Equ., Volume 255 (2013), pp. 3020–3028 | DOI | Zbl

[15] Laister, R.; Robinson, J.C.; Sierżęga, M. Non-existence of local solutions of semilinear heat equations of Osgood type in bounded domains, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 621–626 | DOI | Zbl

[16] Matos, J.; Terraneo, E. Nonuniqueness for a critical nonlinear heat equation with any initial data, Nonlinear Anal., Volume 55 (2003), pp. 927–936 | DOI | Zbl

[17] Ni, W.-M.; Sacks, P. Singular behavior in nonlinear parabolic equations, Trans. Am. Math. Soc., Volume 287 (1985), pp. 657–671 | Zbl

[18] Quittner, P.; Souplet, P. Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Basel, 2007 | Zbl

[19] Robinson, J.C.; Sierżęga, M. Supersolutions for a class of semilinear heat equations, Rev. Mat. Complut., Volume 26 (2013), pp. 341–360 | DOI | Zbl

[20] Sierżęga, M. Topics in the theory of semilinear heat equations, University of Warwick, 2012 (PhD thesis)

[21] van den Berg, M. Heat equation and the principle of not feeling the boundary, Proc. R. Soc. Edinb. A, Volume 112 (1989), pp. 257–262 | DOI | Zbl

[22] van den Berg, M. Gaussian bounds for the Dirichlet heat kernel, J. Funct. Anal., Volume 88 (1990), pp. 267–278 | DOI | Zbl

[23] Weissler, F.B. Semilinear evolution equations in Banach spaces, J. Funct. Anal., Volume 32 (1979), pp. 277–296 | DOI | Zbl

[24] Weissler, F.B. Local existence and nonexistence for semilinear parabolic equations in Lp , Indiana Univ. Math. J., Volume 29 (1980), pp. 79–102 | DOI | Zbl

[25] Weissler, F.B. Existence and nonexistence of global solutions for a semilinear heat equation, Isr. J. Math., Volume 38 (1981), pp. 29–40 | DOI | MR | Zbl

Cité par Sources :