For we compare two natural types of fractional Laplacians , namely, the “Navier” and the “Dirichlet” ones.
Mots clés : Fractional Laplacians, Nonlocal differential operators, Sobolev spaces
@article{AIHPC_2016__33_6_1667_0, author = {Musina, Roberta and Nazarov, Alexander I.}, title = {On fractional {Laplacians} {\textendash} 2}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1667--1673}, publisher = {Elsevier}, volume = {33}, number = {6}, year = {2016}, doi = {10.1016/j.anihpc.2015.08.001}, mrnumber = {3569246}, zbl = {1358.47030}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2015.08.001/} }
TY - JOUR AU - Musina, Roberta AU - Nazarov, Alexander I. TI - On fractional Laplacians – 2 JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 1667 EP - 1673 VL - 33 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2015.08.001/ DO - 10.1016/j.anihpc.2015.08.001 LA - en ID - AIHPC_2016__33_6_1667_0 ER -
%0 Journal Article %A Musina, Roberta %A Nazarov, Alexander I. %T On fractional Laplacians – 2 %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 1667-1673 %V 33 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2015.08.001/ %R 10.1016/j.anihpc.2015.08.001 %G en %F AIHPC_2016__33_6_1667_0
Musina, Roberta; Nazarov, Alexander I. On fractional Laplacians – 2. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 6, pp. 1667-1673. doi : 10.1016/j.anihpc.2015.08.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2015.08.001/
[1] On the regularity of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf–Oleinik boundary point principle, Probl. Mat. Anal., Volume 57 (2011), pp. 3–68 (in Russian); English transl.: J. Math. Sci., 176, 2011, 281–360 | MR | Zbl
[2] Nonlinear equations for fractional Laplacians. I: regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014) no. 1, pp. 23–53 | DOI | Numdam | MR | Zbl
[3] Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., Volume 224 (2010) no. 5, pp. 2052–2093 | DOI | MR | Zbl
[4] An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., Volume 32 (2007) no. 7–9, pp. 1245–1260 | MR | Zbl
[5] Regularity of radial extremal solutions for some non-local semilinear equations, Commun. Partial Differ. Equ., Volume 36 (2011) no. 8, pp. 1353–1384 | DOI | MR | Zbl
[6] On fractional Laplacians, Commun. Partial Differ. Equ., Volume 39 (2014) no. 9, pp. 1780–1790 | DOI | MR | Zbl
[7] Extension problem and Harnack's inequality for some fractional operators, Commun. Partial Differ. Equ., Volume 35 (2010) no. 11, pp. 2092–2122 | DOI | MR | Zbl
[8] Interpolation Theory, Function Spaces, Differential Operators, Deutscher Verlag Wissensch., Berlin, 1978 | MR | Zbl
Cité par Sources :