Nonhomogeneous boundary conditions for the spectral fractional Laplacian
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 439-467.

We present a construction of harmonic functions on bounded domains for the spectral fractional Laplacian operator and we classify them in terms of their divergent profile at the boundary. This is used to establish and solve boundary value problems associated with nonhomogeneous boundary conditions. We provide a weak-L1 theory to show how problems with measure data at the boundary and inside the domain are well-posed. We study linear and semilinear problems, performing a sub- and supersolution method. We finally show the existence of large solutions for some power-like nonlinearities.

DOI : 10.1016/j.anihpc.2016.02.001
Classification : 35B40, 35B30, 45P05, 35C15
Mots-clés : Spectral fractional Laplacian, Dirichlet problem, Boundary blow-up solutions, Large solutions
@article{AIHPC_2017__34_2_439_0,
     author = {Abatangelo, Nicola and Dupaigne, Louis},
     title = {Nonhomogeneous boundary conditions for the spectral fractional {Laplacian}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {439--467},
     publisher = {Elsevier},
     volume = {34},
     number = {2},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.02.001},
     mrnumber = {3610940},
     zbl = {1372.35327},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2016.02.001/}
}
TY  - JOUR
AU  - Abatangelo, Nicola
AU  - Dupaigne, Louis
TI  - Nonhomogeneous boundary conditions for the spectral fractional Laplacian
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 439
EP  - 467
VL  - 34
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2016.02.001/
DO  - 10.1016/j.anihpc.2016.02.001
LA  - en
ID  - AIHPC_2017__34_2_439_0
ER  - 
%0 Journal Article
%A Abatangelo, Nicola
%A Dupaigne, Louis
%T Nonhomogeneous boundary conditions for the spectral fractional Laplacian
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 439-467
%V 34
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2016.02.001/
%R 10.1016/j.anihpc.2016.02.001
%G en
%F AIHPC_2017__34_2_439_0
Abatangelo, Nicola; Dupaigne, Louis. Nonhomogeneous boundary conditions for the spectral fractional Laplacian. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 439-467. doi : 10.1016/j.anihpc.2016.02.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2016.02.001/

[1] Abatangelo, N. Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst., Ser. A, Volume 35 (2015) no. 12 | DOI | MR | Zbl

[2] Abatangelo, N. Very large solution for the fractional Laplacian: towards a fractional Keller–Osserman condition, Adv. Nonlinear Anal. (2016) (in press) | MR

[3] Axler, S.; Bourdon, P.; Ramey, W. Harmonic Function Theory, Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 2001 | MR | Zbl

[4] Bogdan, K.; Byczkowski, T.; Kulczycki, T.; Ryznar, M.; Song, R.; Vondraček, Z. Potential Analysis of Stable Processes and Its Extensions, Lecture Notes in Mathematics, vol. 1980, Springer-Verlag, Berlin, 2009 (Edited by Piotr Graczyk and Andrzej Stos) | DOI | MR

[5] Bonforte, M.; Sire, Y.; Vázquez, J.L. Existence, uniqueness and asymptotic behavior for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 5725–5767 | DOI | MR

[6] Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011 | MR | Zbl

[7] Caffarelli, L.A.; Stinga, P.R. Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 3, pp. 767–807 | Numdam | MR | Zbl

[8] Chen, H.; Felmer, P.; Quaas, A. Large solutions to elliptic equations involving fractional Laplacian, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 6, pp. 1199–1228 | DOI | Numdam | MR | Zbl

[9] Davies, E.B. The equivalence of certain heat kernel and Green function bounds, J. Funct. Anal., Volume 71 (1987) no. 1, pp. 88–103 | DOI | MR | Zbl

[10] Davies, E.B.; Simon, B. Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Funct. Anal., Volume 59 (1984) no. 2, pp. 335–395 | DOI | MR | Zbl

[11] Dhifli, A.; Mâagli, H.; Zribi, M. On the subordinate killed B.M in bounded domains and existence results for nonlinear fractional Dirichlet problems, Math. Ann., Volume 352 (2012) no. 2, pp. 259–291 | DOI | MR | Zbl

[12] Felmer, P.; Quaas, A. Boundary blow up solutions for fractional elliptic equations, Asymptot. Anal., Volume 78 (2012) no. 3, pp. 123–144 | MR | Zbl

[13] Glover, J.; Pop-Stojanovic, Z.R.; Rao, M.; Šikić, H.; Song, R.; Vondraček, Z. Harmonic functions of subordinate killed Brownian motion, J. Funct. Anal., Volume 215 (2004) no. 2, pp. 399–426 | DOI | MR | Zbl

[14] Glover, J.; Rao, M.; Šikić, H.; Song, R. Classical and Modern Potential Theory and Applications, NATO Adv. Stud. Inst. Ser., Ser. C, Math. Phys. Sci., Volume vol. 430, Kluwer Acad. Publ., Dordrecht (1994), pp. 217–232 (Chateau de Bonas, 1993) | MR | Zbl

[15] Grubb, G. Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators, Adv. Math., Volume 268 (2015), pp. 478–528 | DOI | MR | Zbl

[16] Grubb, G. Regularity of spectral fractional Dirichlet and Neumann problems, Math. Nachr. (2016) (in press) | MR | Zbl

[17] Guan, Q. Integration by parts formula for regional fractional Laplacian, Commun. Math. Phys., Volume 266 (2006) no. 2, pp. 289–329 | DOI | MR | Zbl

[18] Lions, J.-L.; Magenes, E. Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, vol. 17, Dunod, Paris, 1968 | Zbl

[19] Montenegro, M.; Ponce, A.C. The sub-supersolution method for weak solutions, Proc. Am. Math. Soc., Volume 136 (2008) no. 7, pp. 2429–2438 | DOI | MR | Zbl

[20] Mou, C.; Yi, Y. Interior regularity for regional fractional Laplacian, Commun. Math. Phys., Volume 340 (2015) no. 1, pp. 233–251 | MR | Zbl

[21] Servadei, R.; Valdinoci, E. On the spectrum of two different fractional operators, Proc. R. Soc. Edinb. A, Volume 144 (2014) no. 4, pp. 831–855 | DOI | MR | Zbl

[22] Silvestre, L. Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., Volume 60 (2007) no. 1, pp. 67–112 | DOI | MR | Zbl

[23] Song, R. Sharp bounds on the density, Green function and jumping function of subordinate killed BM, Probab. Theory Relat. Fields, Volume 128 (2004) no. 2, pp. 606–628 | MR | Zbl

[24] Song, R.; Vondraček, Z. Potential theory of subordinate killed Brownian motion in a domain, Probab. Theory Relat. Fields, Volume 125 (2003) no. 4, pp. 578–592 | DOI | MR | Zbl

[25] Zhang, Q. The boundary behavior of heat kernels of Dirichlet Laplacians, J. Differ. Equ., Volume 182 (2002) no. 2, pp. 416–430 | DOI | MR | Zbl

Cité par Sources :