In this work, we provide stability estimates for the continuity equation with Sobolev vector fields. The results are inferred from contraction estimates for certain logarithmic Kantorovich–Rubinstein distances. As a by-product, we obtain a new proof of uniqueness in the DiPerna–Lions setting. The novelty in the proof lies in the fact that it is not based on the theory of renormalized solutions.
@article{AIHPC_2017__34_7_1837_0, author = {Seis, Christian}, title = {A quantitative theory for the continuity equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1837--1850}, publisher = {Elsevier}, volume = {34}, number = {7}, year = {2017}, doi = {10.1016/j.anihpc.2017.01.001}, zbl = {1377.35041}, mrnumber = {3724758}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2017.01.001/} }
TY - JOUR AU - Seis, Christian TI - A quantitative theory for the continuity equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1837 EP - 1850 VL - 34 IS - 7 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2017.01.001/ DO - 10.1016/j.anihpc.2017.01.001 LA - en ID - AIHPC_2017__34_7_1837_0 ER -
%0 Journal Article %A Seis, Christian %T A quantitative theory for the continuity equation %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1837-1850 %V 34 %N 7 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2017.01.001/ %R 10.1016/j.anihpc.2017.01.001 %G en %F AIHPC_2017__34_7_1837_0
Seis, Christian. A quantitative theory for the continuity equation. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1837-1850. doi : 10.1016/j.anihpc.2017.01.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2017.01.001/
[1] Exponential self-similar mixing and loss of regularity for continuity equations, C. R. Math., Volume 352 (2014) no. 11, pp. 901–906 | DOI | MR | Zbl
[2] Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227–260 | DOI | MR | Zbl
[3] Continuity equations and ODE flows with non-smooth velocity, Proc. R. Soc. Edinb., Sect. A, Volume 144 (2014) no. 6, pp. 1191–1244 | DOI | MR | Zbl
[4] Upper bounds on coarsening rates in demixing binary viscous liquids, SIAM J. Math. Anal., Volume 43 (2011) no. 1, pp. 114–134 | DOI | MR | Zbl
[5] A lemma and a conjecture on the cost of rearrangements, Rend. Semin. Mat. Univ. Padova, Volume 110 (2003), pp. 97–102 | Numdam | MR | Zbl
[6] Renormalized solutions to the continuity equation with an integrable damping term, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 2, pp. 1831–1845 | DOI | MR | Zbl
[7] Estimates and regularity results for the DiPerna–Lions flow, J. Reine Angew. Math., Volume 616 (2008), pp. 15–46 | MR | Zbl
[8] Transport equation with integral terms, 2016 (preprint) | arXiv | MR | Zbl
[9] Non-unicité du transport par un champ de vecteurs presque BV, Seminaire: Équations aux Dérivées Partielles, 2002–2003, Sémin. Équ. Dériv. Partielles, vol. XIX, École Polytech, Palaiseau, 2003, pp. 9 | Numdam | MR | Zbl
[10] On the Fokker–Planck–Boltzmann equation, Commun. Math. Phys., Volume 120 (1988) no. 1, pp. 1–23 | DOI | MR | Zbl
[11] Global weak solutions of Vlasov–Maxwell systems, Commun. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 729–757 | DOI | MR | Zbl
[12] On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math. (2), Volume 130 (1989) no. 2, pp. 321–366 | DOI | MR | Zbl
[13] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511–547 | DOI | MR | Zbl
[14] Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992 | MR | Zbl
[15] A new proof of the uniqueness of the flow for ordinary differential equations with BV vector fields, Ann. Mat. Pura Appl. (4), Volume 190 (2011) no. 1, pp. 91–103 | DOI | MR | Zbl
[16] Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows, Nonlinearity, Volume 27 (2014) no. 5, pp. 973–985 | DOI | MR | Zbl
[17] Differential equations with singular fields, J. Math. Pures Appl. (9), Volume 94 (2010) no. 6, pp. 597–621 | MR | Zbl
[18] Optimal stirring strategies for passive scalar mixing, J. Fluid Mech., Volume 675 (2011), pp. 465–476 | MR | Zbl
[19] A fully nonlinear version of the incompressible Euler equations: the semigeostrophic system, SIAM J. Math. Anal., Volume 38 (2006) no. 3, pp. 795–823 (electronic) | DOI | MR | Zbl
[20] Uniqueness of the solution to the Vlasov–Poisson system with bounded density, J. Math. Pures Appl. (9), Volume 86 (2006) no. 1, pp. 68–79 | DOI | MR | Zbl
[21] Crossover of the coarsening rates in demixing of binary viscous liquids, Commun. Math. Sci., Volume 11 (2013) no. 2, pp. 441–464 | DOI | MR | Zbl
[22] Convergence rates for upwind schemes with rough coefficients, 2016 (preprint) | arXiv | MR | Zbl
[23] Maximal mixing by incompressible fluid flows, Nonlinearity, Volume 26 (2013) no. 12, pp. 3279–3289 | DOI | MR | Zbl
[24] Optimal stability estimates for continuity equations, Proc. R. Soc. Edinb., Sect. A (2017) (in press)
[25] Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, N.J., 1970 | MR | Zbl
[26] Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl
[27] Mixing and un-mixing by incompressible flows, J. Eur. Math. Soc. (2017) (in press; preprint, 2014) | arXiv | DOI | MR | Zbl
Cité par Sources :