Long time asymptotic behavior of the focusing nonlinear Schrödinger equation
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 887-920.

We study the Cauchy problem for the focusing nonlinear Schrödinger (fNLS) equation. Using the generalization of the nonlinear steepest descent method we compute the long-time asymptotic expansion of the solution ψ(x,t) in any fixed space-time cone C(x1,x2,v1,v2)={(x,t)R2:x=x0+vt with x0[x1,x2],v[v1,v2]} up to an (optimal) residual error of order O(t3/4). In each cone C the leading order term in this expansion is a multi-soliton whose parameters are modulated by soliton–soliton and soliton–radiation interactions as one moves through the cone. Our results require that the initial data possess one L2(R) moment and (weak) derivative and that it not generate any spectral singularities.

DOI : 10.1016/j.anihpc.2017.08.006
Mots-clés : Focusing, Nonlinear Schrödinger, Long time asymptotics, Integrable systems, Riemann–Hilbert, Soliton resolution
@article{AIHPC_2018__35_4_887_0,
     author = {Borghese, Michael and Jenkins, Robert and McLaughlin, Kenneth D.T.-R.},
     title = {Long time asymptotic behavior of the focusing nonlinear {Schr\"odinger} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {887--920},
     publisher = {Elsevier},
     volume = {35},
     number = {4},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.08.006},
     mrnumber = {3795020},
     zbl = {1390.35020},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2017.08.006/}
}
TY  - JOUR
AU  - Borghese, Michael
AU  - Jenkins, Robert
AU  - McLaughlin, Kenneth D.T.-R.
TI  - Long time asymptotic behavior of the focusing nonlinear Schrödinger equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 887
EP  - 920
VL  - 35
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2017.08.006/
DO  - 10.1016/j.anihpc.2017.08.006
LA  - en
ID  - AIHPC_2018__35_4_887_0
ER  - 
%0 Journal Article
%A Borghese, Michael
%A Jenkins, Robert
%A McLaughlin, Kenneth D.T.-R.
%T Long time asymptotic behavior of the focusing nonlinear Schrödinger equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 887-920
%V 35
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2017.08.006/
%R 10.1016/j.anihpc.2017.08.006
%G en
%F AIHPC_2018__35_4_887_0
Borghese, Michael; Jenkins, Robert; McLaughlin, Kenneth D.T.-R. Long time asymptotic behavior of the focusing nonlinear Schrödinger equation. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 887-920. doi : 10.1016/j.anihpc.2017.08.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2017.08.006/

[1] Ablowitz, M.; Kaup, D.; Newell, A.; Segur, H. The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., Volume 53 (1974) no. 4, pp. 249–315

[2] Baik, J.; Kriecherbauer, T.; McLaughlin, K.; Miller, P. Discrete Orthogonal Polynomials: Asymptotics and Applications, Ann. Math. Stud., vol. 164, Princeton University Press, Princeton, NJ, 2007 (pp. viii+170. ISBN: 978-0-691-12734-7, 0-691-12734-4) | MR | Zbl

[3] Beals, R.; Coifman, R. Scattering and inverse scattering for first order systems, Commun. Pure Appl. Math., Volume 37 (1984) no. 1, pp. 39–90 | DOI | MR | Zbl

[4] Beals, R.; Deift, P.; Tomei, C. Direct and Inverse Scattering on the Line, Math. Surv. Monogr., vol. 28, American Mathematical Society, Providence, RI, 1988 (pp. xiv+209) | DOI

[5] Beals, Richard; Coifman, R.R. Linear spectral problems, nonlinear equations and the -method, Inverse Probl., Volume 5 (1989) no. 2, pp. 87–130 http://stacks.iop.org/0266-5611/5/87 | MR | Zbl

[6] Buckingham, R.; Jenkins, R.; Miller, P. Semiclassical soliton ensembles for the three-wave resonant interaction equations, Commun. Math. Phys., Volume 354 (2017) no. 3, pp. 1015–1100 | DOI

[7] Buckingham, R.; Miller, P. The sine-Gordon equation in the semiclassical limit: dynamics of fluxon condensates, Mem. Am. Math. Soc., Volume 225 (2013) no. 1059 (pp. vi+136) | DOI

[8] Cuccagna, S.; Jenkins, R. On the asymptotic stability of N-soliton solutions of the defocusing nonlinear Schrödinger equation, Comment. Phys.-Math., Volume 343 (2016) no. 3, pp. 921–969 | DOI

[9] Deift, P.; Its, A.; Zhou, X. Long-time asymptotics for integrable nonlinear wave equations, Important Developments in Soliton Theory, Springer Ser. Nonlin. Dyn., Springer, Berlin, 1993, pp. 181–204

[10] Deift, P.; Zhou, X. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2), Volume 137 (1993) no. 2, pp. 295–368 | DOI | MR | Zbl

[11] Deift, P.; Zhou, X. Long-time asymptotics for integrable systems. Higher order theory, Comment. Phys.-Math., Volume 165 (1994) no. 1, pp. 175–191 http://projecteuclid.org/euclid.cmp/1104271038 | MR | Zbl

[12] Deift, P.; Zhou, X. Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space, Commun. Pure Appl. Math., Volume 56 (2003) no. 8, pp. 1029–1077 (Dedicated to the memory of Jürgen K. Moser) | DOI | MR | Zbl

[13] Deift, P.; Zhou, X., Lectures in Mathematical Sciences, New Ser., Volume vol. 5, Graduate School of Mathematical Sciences, University of Tokyo (1994), pp. 61

[14] Dieng, M.; McLaughlin, K. Long-time asymptotics for the NLS equation via dbar methods, May 2008 | arXiv

[15] Faddeev, L.; Takhtajan, L. Hamiltonian Methods in the Theory of Solitons, Class. Math., Springer, Berlin, 2007 pp. x+592 (in English); Translated from the 1986 Russian original by Alexey G. Reyman

[16] Grunert, K.; Teschl, G. Long-time asymptotics for the Korteweg–de Vries equation via nonlinear steepest descent, Math. Phys. Anal. Geom., Volume 12 (2009) no. 3, pp. 287–324 | DOI

[17] Its, A. Asymptotic behavior of the solutions to the nonlinear Schrödinger equation, and isomonodromic deformations of systems of linear differential equations, Dokl. Akad. Nauk SSSR, Volume 261 (1981) no. 1, pp. 14–18

[18] Jenkins, R. Regularization of a sharp shock by the defocusing nonlinear Schrödinger equation, Nonlinearity, Volume 28 (2015) no. 7, pp. 2131 http://stacks.iop.org/0951-7715/28/i=7/a=2131 | DOI | MR | Zbl

[19] Jenkins, R.; McLaughlin, K. Semiclassical limit of focusing NLS for a family of square barrier initial data, Commun. Pure Appl. Math., Volume 67 (2014) no. 2, pp. 246–320 | DOI

[20] Jenkins, R.; Liu, J.; Perry, P.; Sulem, C. Global Well-posedness and soliton resolution for the derivative nonlinear Schrödinger equation, June 2017 | arXiv

[21] Kamvissis, S. Focusing nonlinear Schrödinger equation with infinitely many solitons, J. Math. Phys., Volume 36 (1995) no. 8, pp. 4175–4180 | DOI | MR | Zbl

[22] Kamvissis, S. Long time behavior for the focusing nonlinear Schrödinger equation with real spectral singularities, Comment. Phys.-Math., Volume 180 (1996) no. 2, pp. 325–341 http://projecteuclid.org/euclid.cmp/1104287351

[23] Kamvissis, S.; McLaughlin, K.; Miller, P. Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation, Ann. Math. Stud., vol. 154, Princeton University Press, Princeton, NJ, 2003 (pp. xii+265. ISBN: 0-691-11483-8, 0-691-11482-X) | MR | Zbl

[24] Klaus, M.; Shaw, J. On the eigenvalues of Zakharov–Shabat systems, SIAM J. Math. Anal., Volume 34 (2003) no. 4, pp. 759–773 | DOI | MR | Zbl

[25] Krüger, H.; Teschl, G. Long-time asymptotics of the Toda lattice for decaying initial data revisited, Rev. Math. Phys., Volume 21 (2009) no. 1, pp. 61–109 | DOI

[26] Liu, J.; Perry, P.A.; Sulem, C. Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 1, pp. 217–265 http://www.sciencedirect.com/science/article/pii/S0294144917300616 | DOI

[27] Martínez Alonso, L. Effect of the radiation component on soliton motion, Phys. Rev. D (3), Volume 32 (1985) no. 6, pp. 1459–1466 | DOI | MR

[28] Martínez Alonso, L. Soliton motion in the case of a nonzero reflection coefficient, Phys. Rev. Lett., Volume 54 (1985) no. 6, pp. 499–501 | DOI | MR

[29] McLaughlin, K.; Miller, P. The ¯ steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights, Int. Math. Res. Pap. IMRN (2006) | MR | Zbl

[30] McLaughlin, K.; Miller, P. The ¯ steepest descent method for orthogonal polynomials on the real line with varying weights, Int. Math. Res. Not. IMRN (2008) | DOI | MR | Zbl

[31] http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions Release 1.0.14 of 2016-12-21. F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders (Eds.)

[32] Tovbis, A.; Venakides, S.; Zhou, X. On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation, Commun. Pure Appl. Math., Volume 57 (2004) no. 7, pp. 877–985 | DOI | MR | Zbl

[33] Trogdon, Thomas; Olver, Sheehan Riemann–Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016 (pp. xviii+373) | MR | Zbl

[34] Zakharov, V.; Manakov, S. Asymptotic behavior of non-linear wave systems integrated by the inverse scattering method, Zh. Èksp. Teor. Fiz., Volume 71 (1976) no. 1, pp. 203–215 | MR

[35] Zakharov, V.; Shabat, A. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Zh. Èksp. Teor. Fiz., Volume 61 (1971) no. 1, pp. 118–134 | MR

[36] Zhou, X. Direct and inverse scattering transforms with arbitrary spectral singularities, Commun. Pure Appl. Math., Volume 42 (1989) no. 7, pp. 895–938 | DOI | MR | Zbl

[37] Zhou, X. L2-Sobolev space bijectivity of the scattering and inverse scattering transforms, Commun. Pure Appl. Math., Volume 51 (1998) no. 7, pp. 697–731 | DOI

Cité par Sources :