We consider tensors that are symmetric, positive semi-definite, and whose row-divergence vanishes identically. We establish sharp inequalities for the integral of . We apply them to models of compressible inviscid fluids: Euler equations, Euler–Fourier, relativistic Euler, Boltzman, BGK, etc. We deduce an a priori estimate for a new quantity, namely the space–time integral of , where ρ is the mass density, p the pressure and n the space dimension. For kinetic models, the corresponding quantity generalizes Bony's functional.
@article{AIHPC_2018__35_5_1209_0, author = {Serre, Denis}, title = {Divergence-free positive symmetric tensors and fluid dynamics}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1209--1234}, publisher = {Elsevier}, volume = {35}, number = {5}, year = {2018}, doi = {10.1016/j.anihpc.2017.11.002}, mrnumber = {3813963}, zbl = {1393.35181}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.002/} }
TY - JOUR AU - Serre, Denis TI - Divergence-free positive symmetric tensors and fluid dynamics JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 1209 EP - 1234 VL - 35 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.002/ DO - 10.1016/j.anihpc.2017.11.002 LA - en ID - AIHPC_2018__35_5_1209_0 ER -
%0 Journal Article %A Serre, Denis %T Divergence-free positive symmetric tensors and fluid dynamics %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 1209-1234 %V 35 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.002/ %R 10.1016/j.anihpc.2017.11.002 %G en %F AIHPC_2018__35_5_1209_0
Serre, Denis. Divergence-free positive symmetric tensors and fluid dynamics. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 5, pp. 1209-1234. doi : 10.1016/j.anihpc.2017.11.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.002/
[1] Shape Optimization by the Homogenization Method, Applied Mathematical Sciences, vol. 146, Springer-Verlag, 2002 | DOI | MR | Zbl
[2] Relativistic Fluids and Magneto-Fluids, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, 1989 | Zbl
[3] Convexity conditions and existence theorems in non-linear elasticity, Arch. Ration. Mech. Anal., Volume 63 (1977), pp. 337–403 | MR | Zbl
[4] Journées EDPs (1987) (Saint Jean de Monts, 1987 Exp. # XVI) | MR
[5] Global weak solutions of the Boltzmann equation, J. Stat. Phys., Volume 118 (2005), pp. 333–342 | DOI | MR | Zbl
[6] Compacité par compensation et espaces de Hardy, C. R. Acad. Sci. Paris, Volume 309 (1989), pp. 945–949 | Numdam | MR | Zbl
[7] On uniform -estimates in periodic homogenization, Proc. R. Soc. Edinb. A, Volume 131 (2001), pp. 499–517 | DOI | MR | Zbl
[8] The Monge–Ampère equation and its link to optimal transportation, Bull., New Ser., Am. Math. Soc., Volume 51 (2014), pp. 527–581 | DOI | MR | Zbl
[9] On the Cauchy problem for the Boltzmann equation: global existence and weak stability results, Ann. Math., Volume 130 (1990), pp. 321–366 | MR | Zbl
[10] Geometric Measure Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1969 | MR | Zbl
[11] A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math., Volume 182 (2010), pp. 167–211 | DOI | MR | Zbl
[12] Proprietà di alcune di funzioni in più variabili, Ric. Mat., Volume 7 (1958), pp. 102–137 | MR | Zbl
[13] Isoperimetric inequalities in Riemannian manifolds. Appendix I, Asymptotic Theory of Finite Dimensional Normed Space, Lect. Notes Math., vol. 1200, Springer-Verlag, 1986, pp. 114–129 | MR | Zbl
[14] Some existence results of fully nonlinear elliptic equations of Monge–Ampère type, Commun. Pure Appl. Math., Volume 43 (1990), pp. 233–271 | MR | Zbl
[15] From Boltzmann equation to the Navier–Stokes and Euler equations II, Arch. Ration. Mech. Anal., Volume 158 (2001), pp. 195–211 | MR | Zbl
[16] Local smooth solutions of the relativistic Euler equation, J. Math. Kyoto Univ., Volume 35 (1995), pp. 105–114 | MR | Zbl
[17] A surprising higher integrability property of mappings with positive determinant, Bull., New Ser., Am. Math. Soc., Volume 21 (1989), pp. 245–248 | DOI | MR | Zbl
[18] Compacité par compensation, Ann. Sc. Norm. Super. Pisa, Volume 5 (1978), pp. 489–507 | Numdam | MR | Zbl
[19] Matrices, Grad. Texts Math., vol. 216, Springer-Verlag, 2002 | MR | Zbl
[20] Shock reflection in gas dynamics, Handbook of Mathematical Fluid Dynamics IV, Elsevier, North-Holland, 2007, pp. 39–122 | DOI | MR
[21] Expansion of a compressible gas in vacuum, Bull. Inst. Math. Acad. Sin. (N.S.), Volume 10 (2015), pp. 695–716 | MR | Zbl
[22] Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, vol. IV, Res. Notes in Math., vol. 39, Pitman, 1979, pp. 136–212 | MR | Zbl
[23] The General Theory of Homogenization; A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, vol. 7, Springer-Verlag, 2009 | MR | Zbl
[24] Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, Amer. Math. Society, 2003 | MR | Zbl
Cité par Sources :