Annales mathématiques Blaise Pascal

Jerzy KąKol
 The Mackey-Arens and Hahn-Banach theorems for spaces over valued fields

Annales mathématiques Blaise Pascal, tome 2, no 1 (1995), p. 147-153
http://www.numdam.org/item?id=AMBP_1995__2_1_147_0
© Annales mathématiques Blaise Pascal, 1995, tous droits réservés.
L'accès aux archives de la revue «Annales mathématiques Blaise Pascal » (http:// math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

THE MACKEY-ARENS AND HAHN-BANACH THEOREMS

FOR SPACES OVER VALUED FIELDS

Jerzy Kakol

Astract. Characterizations of the spherical completeness of a non-archimedean complete non-trivially valued field in terms of classical theorems of Functional Analysis are obtained.

1991 Mathematics subject classification : 46 S10

Spherical completeness

Throughout this paper $K=(K,||$.$) will denote a non-archimedean complete valued$ field with a non-trivial valuation $|$.$| . It is well-known that the absolute value function$ $|\cdot|$ of the field of the real numbers \mathbb{R} or the complex numbers. \mathbb{C} satisfies the following properties :
(i) $0 \leq|x|,|x|=0$ iff $x=0$,
(ii) $|x+y| \leq|x|+|y|$,
(iii) $|x y|=|x||y|, x, y \in \mathbb{R}$ or $x, y \in \mathbb{C}$.

If K is a field, then by a valuation on K we will mean a map $|$.$| of K$ into \mathbb{R} satisfying the above properties; in this case $(K,||$.$) will be called a valued field. We will assume$ that K is complete with respect to the natural metric of K.

It turns out that if K is not isomorphic to \mathbb{R} or \mathbb{C}, then its valuation satisfies the following strong triangle inequality, cf. e.g. [12],
(ii') $|x+y| \leq \max \{|x|,|y|\}, x, y \in K$.
A valued field K whose valuation satisfies (ii') will be called non-archimedean and its valuation non-archimedean.

Let us first recall the following well-known result of Cantor
Theorem 0 Let (X, ρ) be a metric space. Then it is complete iff every shrinking sequence of closed balls whose radii tend to zero has non-empty intersection.

Consider the set \mathbb{N} of the natural numbers endowed with the following metric ρ defined by $\rho(m, n)=0$ if $m=n$ and $1+\max \left(\frac{1}{m}, \frac{1}{n}\right)$ if $m \neq n$.

Then the metric ρ is non-archimedean, i.e. $\rho(m, n)=0 \quad$ iff either $m=n$, or $\rho(m, n) \leq \max \{\rho(m, k), \rho(k, n)\}$, for all $m, n, k \in \mathbb{N}$.

It is easy to see that every shrinking sequence of balls in \mathbb{N} whose radii tend to zero has non-empty intersection; note that every ball whose radius is smaller than 1 contains exactly one point. On the other hand, the balls $B_{1+\frac{1}{1}}(1), B_{1+\frac{1}{2}}(2), \ldots$, form a decreasing sequence and their intersection is empty. This suggests the following, see Ingleton [3] :

A non-archimedean metric space (X, ρ) will be said to be spherically complete if the intersection of every shrinking sequence of its balls is non-empty.

Clearly spherical completeness implies completeness; the converse fails : The space (\mathbb{N}, ρ) is complete but not spherically complete. We refer to [11] and [12] for more infomation concerning this property.

Theorem 1 Let (X, ρ) be a non-archimedean metric space. Then (X, ρ) is spherically complete iff given an arbitrary family \mathcal{B} of balls in X, no two of which are disjoint, then the intersection of the elements of \mathcal{B} is non-empty.

The aim of this note is to collect a few characterizations of the spherical completeness of K in terms of the Mackey-Arens, Hahn-Banach and weak Schauder basis theorems, respectively, see [5], [6], [7], [12].

The Mackey-Arens and Hahn-Banach theorems

The terms "K-space", "topology"," seminorm or norm" will mean a Hausdorff locally convex space (lcs) over K, a locally convex topology (in the sense of Monna) and a nonarchimedean seminorm (norm), respectively. A seminorm on a vector space E over K is non-archimedean if it satisfies condition (ii'). Clearly the topology τ generated by a norm is locally convex. Recall that a topological vector space (tvs) $E=(E, \tau)$ over K is locally convex [10] if τ has a basis of absolutely convex neighbourhoods of zero. A subset U of E is absolutely convex (in the sense of Monna [10]) if $\alpha x+\beta y \in U$, whenever $x, y \in U$, $\alpha, \beta \in,|\alpha| \leq 1,|\beta| \leq 1$. For the basic notions and properties concerning tvs and lcs over K we refer to [10], [11], [13].

A locally convex (lc) topology γ on (E, τ) is called compatible with τ, if τ and γ have the same continuous linear functionals; $(E, \tau)^{*}=(E, \gamma)^{*} .(E, \tau)$ is dual-separating if $(E, \tau)^{*}$ separates points of E. If G is a vector subspace of $E, \tau \mid G$ and τ / G denote the topology τ restricted to G and the quotient topology of the quotient space E / G, respectively. If α is a finer l.c. topology on E / G, we denote by $\gamma:=\tau \vee \alpha$ the weakest l.c. topology on E such that $\tau \leq \gamma, \gamma / G=\alpha, \gamma|G=\tau| G$, cf. e.g. [1]. The sets $U \cap q^{-1}(V)$ compose a basis of neighbourhoods of zero for γ, where U, V run over bases of neighbourhoods of zero for τ and α, respectively, $q:=E E / G$ is the quotient map. By $\sup \{\tau, \alpha\}$ we denote the weakest l.c. topology on E which is finer than τ and α.

By the Mackey topology $\mu\left(E, E^{*}\right)$ associated with a lcs $E=(E, \tau)$ we mean the finest locally convex topology on E compatible with τ. In [14] Van Tiel showed that every lcs over spherically complete K admits the Mackey topology.

In [3] Ingleton obtained a non-archimedean variant of the Hahn-Banach theorem for normed spaces, where K is spherically complete.

Theorem 2 If $E=(E,\|\cdot\|)$ is a normed space over K and K is spherically complete and D is a subspace of E, then for every continuous linear functional $g \in D^{*}$ there exists a continuous linear extension $f \in E^{*}$ of g such that $\|g\|=\|f\|$.

This suggests the following : A lcs E will be said to have the Hahn-Banach Extension Property (HBEP) [9] if for every subspace D every $g \in D^{*}$ can be extended to $f \in E^{*}$. It is known that every lcs over spherically complete K has the HBEP, cf. e.g. [11].

The following theorem characterizes the spherical completeness of K in terms of classical theorems of Functional Analysis; cf. also [5], [6] and [12], Theorem 4.15. The proof of our Theorem 3 uses some ideas of [4] extended to the non-archimedean case.
l^{∞} (resp. c_{0}) denotes the space of the bounded sequences (resp. the sequences of limit 0) with coefficients in K.

Theorem 3 The following conditions on K are equivalent:
(i) K is spherically complete.
(ii) There exists $g \in\left(l^{\infty}\right)^{*}$ such that $g(x)=\sum_{n} x_{n}$ for every $x \in c_{0}$.
(iii) $\left(l^{\infty} / c_{0}\right)^{*} \neq 0$.
(iv) Every lcs over K admits the Mackey topology.
(v) Every lcs over K (resp. K-normed space) has the HBEP.
(vi) The completion of a dual-separating lcs over K (resp. K-normed space) is dualseparating.
(vii) Every closed subspace of a dual-separating lcs over K (resp. K-normed space) is weakly closed.
(viii) For every lcs over K (resp. K-normed space) every weakly convergent sequence is convergent.
(ix) Every weak Schauder basis in a lcs over K (resp. K-normed space) is a Schauder basis.
Proof By Theorem 4.15 of [12] conditions (i), (ii), (iii) are equivalent. (i) implies (iv) : [14], Theorem 4.17. (i) implies (v) : [3], [11]. The implications (v) implies (vi), (v) implies (vii) are obvious. (i) implies (viii) : see [7]; Theorem 3, [2], Proposition 4.3. (viii) implies (ix) is obvious.
(iv) implies (i): Assume that K is not spherically complete and consider the space l^{∞} of K-valued bounded sequences endowed with the topology τ generated by the norm $\|x\|=\sup _{n}\left|x_{n}\right|, x=\left(x_{n}\right) \in l^{\infty}$. Let f be a non-zero linear function on l^{∞} with $\left.f\right|_{c_{0}}=0$. Set $E:=l^{\infty}$ and $F:=c_{0}$. Define a linear functional h on the quotient space E / F by $h(q(x))=f(x)$, where $q: E \rightarrow E / F$ is the quotient map. Let α be the quotient topology
of E / F. Since $(E / F, \alpha)^{*}=0$, see (iii) implies (i), F is dense in the weak topology $\sigma\left(E, E^{*}\right)$ (recall that $E^{*}=F,[12]$, Theorem 4.17). Observe that on E / F there exists a K-normed topology β such that $(E / F, \alpha)$ and $(E / F, \beta)$ are isomorphic and h is continuous in the topology $\sup \{\alpha, \beta\}$. Indeed, choose $x_{0} \in E / F$ such that $h\left(x_{0}\right)=2$ and define a linear map $T: E / F \rightarrow E / F$ by $T(x):=x-h(x) x_{0}, x \in E / F$. Then $T^{2}=i d$. Define $\beta:=T(\alpha)$ (the image topology). Then h is continuous in the topology $\sup \{\alpha, \beta\}$.

Set $\gamma_{\alpha}:=\sigma\left(E, E^{*}\right) \vee \alpha, \quad \gamma_{\beta}:=\sigma\left(E, E^{*}\right) \vee \beta$. Then γ_{α} and γ_{β} are compatible with $\sigma\left(E, E^{*}\right)$, hence with τ. Assume that E admits the finest locally convex topology μ compatible with τ. Then $\sigma\left(E, E^{*}\right) \leq \sup \left\{\gamma_{\alpha}, \gamma_{\beta}\right\} \leq \mu$.

On the other hand $\sup \left\{\gamma_{\alpha}, \gamma_{\beta}\right\} / F=\sup \{\alpha, \beta\}$. Therefore f is continuous in $\sup \left\{\gamma_{\alpha}, \gamma_{\beta}\right\}$. Since f is not continuous in $\sigma\left(E, E^{*}\right)$ we get a contradiction. The proof is complete.
(vi) implies (i) : Assume that K is not spherically complete. By the Baire category theorem we find a dense subspace G of E with $\operatorname{dim}(E / G)=\operatorname{dim}(E / F)$, where E and F are defined as above. Indeed, let $\left\{x_{s}\right\}_{s \in S}$ be a Hamel basis of E and $\left(S_{n}\right)$ a partition of S such that $S=\bigcup_{n \in \mathbb{N}} S_{n}$ and $\operatorname{card} S_{n}=\operatorname{card} S, n \in \mathbb{N}$.

For every $n \in \mathbb{N}$, we denote by G_{n} the vector space generated by the elements x_{s} when s runs in $\bigcup_{k=1}^{n} S_{k}$. Then we have $E=\bigcup_{n \in \mathbb{N}} G_{n}$ and $\operatorname{dim} G_{n}=\operatorname{dim}\left(E / G_{n}\right)=\operatorname{dim} E, n \in \mathbb{N}$. Then there exists $m \in \mathbb{N}$ such that G_{m} is dense in E. Hence we obtain a subspace G as required. Let α be a K-normed topology on E / G such that the spaces $(E / G, \alpha)$ and $(E / F, \tau / F)$ are isomorphic. Then the topology $\gamma:=\tau \vee \alpha$ is compatible with τ and strictly finer than τ. Let E_{0} be the completion of the dual-separating K-normed space (E, γ). Choose $x \in E_{0} \backslash E$. There exists a sequence $\left(x_{n}\right)$ in E and $y \in E$ such that $x_{n} \rightarrow x$ in E_{0} and $x_{n} \rightarrow y$ in (E, τ). Then $f(x-y)=0$ for all $f \in E_{o}^{*}$ but $x-y \neq 0$. This completes the proof.
(vii) implies (i): Assume that K is not spherically complete. The space G constructed in the previous case is closed in (E, γ) and dense in $\left(E, \sigma\left(E, E^{*}\right)\right)$, where $E^{*}:=(E, \gamma)^{*}$.
(v) implies (i): Assume that K is not spherically complete. Let $\left(e_{n}\right)$ be the sequence of the unit vectors in E, where E is as above. Then $e_{n} \rightarrow 0$ in $\sigma\left(E, E^{*}\right)$, [13]. Clearly $\left(e_{n}\right)$ is a normalized Schauder basis in F. If $x=\left(x_{n}\right) \in F$, then $x=\sum_{n} x_{n} e_{n}$. Set $g(x):=\sum_{n} x_{n}$. Then g is a well-defined continuous linear functional on F. Suppose that g has a continuous linear extension f to the whole space E. Then $f\left(e_{n}\right) \rightarrow 0$ but $g\left(e_{n}\right)=1$ for all $n \in \mathbb{N}$, a contradiction.
(viii) implies (i): See the proof of the previous implication.
(ix) implies (i): Assume that K is not spherically complete. The sequence $\left(e_{n}\right)$ is a Schauder basis in $\left(E, \sigma\left(E, E^{*}\right)\right)$ but it is not a Schauder basis in the original topology of E. The second part of this sentence follows from the fact that E is not of countable type, cf. e.g. [12]. On the other hand, by Theorem 4.17 of [12] (and its proof) the space E is reflexive and for every $g \in E^{*}$ there exists $\left(a_{n}\right) \in F$ such that $g(x)=\sum_{n} x_{n} a_{n}$ for every
$x=\left(x_{n}\right) \in E$. Since $\left(E, \sigma\left(E, E^{*}\right)\right)$ is a sequentially complete lcs [12], Theorem 9.6, then $\sum_{k=1}^{n} x_{k} e_{k}$ weakly converges to $x=\left(x_{n}\right)$.

Remark In [9] Martinez-Maurica and Perez-Garcia proved that whenever K is spherically complete, then the local convexity is a three space property, i.e. if E is an A-Banach tvs over K and F its subspace such that F and E / F are locally convex, then E is locally convex. Is the converse also true?

By $L(E, F)$ we denote the space of all continuous linear maps between lcs E and F. A topology α on E will be called compatible with the pair $(E, L(E, F))$ if $L((E, \alpha), F)=$ $L(E, F)$; if $F=$, as usual we shall say that α is compatible with the dual pair $\left(E, E^{*}\right)$, where $E^{*}:=L(E, K)$.

A lcs space F will be said to have the Mackey-Arens property (MA-property) if for every lcs space E the finest topology $\mu(E, L(E, F)$) compatible with ($E, L(E, F)$) exists, [7].

As we have already mentioned Van Tiel [14] proved that if K is spherically complete, then K has the MA-property, i.e. every K-space E over spherically complete K admits the finest topology $\mu\left(E, E^{*}\right)$ compatible with the dual pair $\left(E, E^{*}\right)$. We have already proved the converse : If K is not spherically complete, then ℓ^{∞} does not admit the Mackey topology $\mu\left(\ell^{\infty},\left(\ell^{\infty}\right)^{*}\right)$. Hence
Corollary K is spherically complete iff it has the MA-property.
On the other hand one has the following
Theorem 4 Every spherically complete normed K-space $F=(F,\|\|$.$) has the MA-$ property.

We shall need the following
Lemma 1 Let E, F be two vector spaces over K, where F is endowed with a norm $\|\cdot\|$ and p, q are seminorms on E. Let $T: E \rightarrow F$ be a linear map such that $\|(T(x))\| \leq$ $\max (p(x), q(x))$. If F is spherically complete, then there exists two linear maps $T_{i}: E \rightarrow F$, $i=1,2$, such that $T=T_{1}+T_{2}$ and $\left\|\left(T_{1}(x)\right)\right\| \leq p(x),\left\|\left(T_{2}(x)\right)\right\| \leq q(x), x \in E$.
Proof Set $P(x, x)=T(x), U(x, y)=\max \{p(x), q(y)\}, x, y \in E$. Then $U(x, y)$ is a seminorm on $E \times E$ and $\|(P(x, x))\|=\|(T(x))\| \leq \max \{p(x), q(x)\}=U(x, x)$. Since F is spherically complete, then by Ingleton theorem, cf. e.g. [6], Theorem 4.18, there exists a linear map $P_{0}: E \times E \rightarrow F$ extending P such that $\left\|\left(P_{0}(x, y)\right)\right\| \leq U(x, y), x, y \in E$. To complete the proof it is enough to put $T_{1}(x)=P_{0}(x, 0), T_{2}(x)=P_{0}(0, x)$.

We shall also need the following lemma. Its proof uses some ideas of [1] and [4].
Lemma 2 Let E, F be two dual-separating K-spaces over non-spherically complete K and such that F is complete and E is an infinite dimensional metrizable and complete. Then E admits two topologies τ_{1} and τ_{2} strictly finer than the original one of E and compatible with the pair $(E, L(E, F))$ and such that the topology sup $\left\{\tau_{1}, \tau_{2}\right\}$ is not compatible with $(E, L(E, F))$.

Proof : Observe that E contains a dense subspace G with $\operatorname{dim}(E / G)=\operatorname{dim}\left(l^{\infty} / c_{0}\right)$. Let h be a non-zero linear functional on E vanishing on G. As above we construct on E two topologies τ_{1} and τ_{2} strictly finer than the original one τ of E such that $\tau_{j}|G=\tau| G$ and $\left(E / G, \tau_{j} / G\right)$ is isomorphic to the quotient space $l^{\infty} / c_{0}, j=1,2$, and h is continuous in $\sup \left\{\tau_{1}, \tau_{2}\right\}$. We show that the topologies $\tau_{j}, j=1,2$, are compatible with the pair $(E, L(E, F))$. Fix $j \in\{1,2\}$ and non-zero $T \in L\left(\left(E, \tau_{j}\right), F\right)$. There exists $x_{0} \in E$ and $f \in F^{*}$ such that $f\left(T\left(x_{0}\right)\right) \neq 0$. Suppose that $T \mid G=\{0\}$. Then the map $\left.q(x) \rightarrow f(T x)\right)$ defines a non-zero continuous linear functional on $\left(E / G, \tau_{j} / G\right), q: E \rightarrow E / G$ is the quotient map. Since $\left(l^{\infty} / c_{0}\right)^{*}=\{0\}$, [12], Corollary 4.3, we get a contradiction. Hence $T \mid G$ is non-zero. Since G is dense in E and τ and τ_{j} coincide on G, there exists a continuous linear extension W of T to E. It is easy to see that $T=W$. Hence $T \in L(E, F)$. Finally the map $x \rightarrow h(x) y$, for fixed $y \in F$, defines a τ-discontinuous linear map H of E into F such that $H \in L\left(\left(E, \sup \tau_{1}, \tau_{2}\right), F\right)$.

Proof of Theorem 4 Let $E=(E, \tau)$ be a lcs and \mathcal{F} the family of all topologies on E compatible with $(E, L(E, F))$. It is enough to show that the topology $\mu:=\sup \mathcal{F}$ belongs to \mathcal{F}. Let $T:(E, \mu) \rightarrow F$ be a continuous linear map. There exist seminorms p_{j} on $E, j=1, \ldots, n$, continuous in topologies $\gamma_{j}\left(\gamma_{j} \in \mathcal{F}\right)$, respectively, and $M>0$ such that $\mid(T x) \| \leq M \max _{1 \leq j \leq n} p_{j}(x)$ for every $x \in E$. Using Lemma 1 one shows that T is τ-continuous.

Remarks (1) There exist complete normed K-spaces having the MA-property which are not spherically complete. In fact, assume that K is spherically complete; then ℓ^{∞} is spherically complete [12], p. 97; hence ℓ^{∞} has the MA-property (by our Theorem 4). On the other hand there exists on the space ℓ^{∞} another norm ν which is equivalent with the usual norm, such that (ℓ^{∞}, ν) is not spherically complete [12], p. 50 and p. 98 . On the other hand the space $\left(\ell^{\infty}, \nu\right)$ has the MA-property.
(2) Let E be an infinite dimensional normed and complete K-space. Since $F:=$ $\prod_{n} E_{n} / \bigoplus_{n} E_{n}$, where $E_{n}=E$ for every $n \in \mathbb{N}$, is spherically complete for any K [12], Theorem 4.1, then by our Theorem 4 the space F has the MA-property. For concrete spaces put $E=\ell^{\infty}$; then $F=\ell^{\infty} / c_{0}$. If K is not spherically complete, then by Lemma 2 the space ℓ^{∞} does not admit the Mackey topology $\mu\left(\ell^{\infty},\left(\ell^{\infty}\right)^{*}\right)$ but ℓ^{∞} / c_{0} has the MA-property. In particular there exists on ℓ^{∞} the finest topology μ compatible with ($\ell^{\infty}, L\left(\ell^{\infty}, \ell^{\infty} / c_{0}\right)$).
(3) Let E and F be K-spaces and assume that E admits the Mackey topology $\mu=$ $\mu\left(E, E^{*}\right)$. Then the finest topology on E compatible with $((E, \mu), L((E, \mu), F))$ exists and equals μ.
(4) In [13], Corollary 7.9, Schikhof proved that for polarly barrelled or polarly bornological K-spaces (E, τ) where K is not spherically complete, the finest polar topology $\mu\left(E, E^{*}\right)$ compatible with (E, E^{*}) exists and equals τ.

REFERENCES

[1] Dierolf S. A note on lifting of linear and locally convex topologies on a quotient space Collectanea Math. vol 311980 p 193-198
[2] De Grande-De Kimpe N. and Perez-Garcia C. Weakly closed subspaces and the Hahn-Banach extension property in p-adic analysis Indag. Math. vol 501988 p 253-261
[3] Ingleton W. The Hahn-Banach Theorem for non-archimedean valued fields Proc. Cambridge Phil. Soc. vol 481952 p 41-45
[4] Kgkol J. The Mackey-Arens theorem for non-locally convex spaces Collectanea Math. vol 411990 p 129-132
[5] Kģkol Remarks on spherical completeness of non-archimedean valued fields Indag. Math.
[6] Kakol J. The weak basis theorem for K-Banach spaces Bull. Soc. Belg. vol 451993 p 1-4
[7] Kakol J. The Mackey-Arens property for spaces over valued fields Bull. Acad. Polon Sci. to appear
[8] Martinez-Maurica J. and Perez-Garcia C. The Hahn-Banach extension property in a class of normed spaces Quaestiones Math. vol 81986 p 335-341
[9] Martinez-Maurica J. and Perez-Garcia C. The three-space problem for a class of normed spaces Bull. Math. Soc. Belg. vol 391987 p 209-214
[10] Monna A.F. Analyse non-archimedienne Lecture Notes in Math. 1970 Springer Berlin
[11] Prolla J. B. Topics in Functional Analysis over valued Division Rings Math.Studies 1982 Amsterdam North-Holland
[12] Van Rooij A.C.M. Non-Archimedean Functional Analysis Marcel Dekker 1978 New York
[13] Schikhof W.H. Locally convex spaces over non-spherically complete valued fields
Bull. Soc. Math. Belg. vol 381986 p 187-224
[14] Van Tiel I. Espaces localement K-convexes Indag. Math vol 271965 p 249-289
Faculty of Mathematics and Informatics
A. Mickiewicz University, Matejki 48/49,

60-769 Poznań, Poland
e-mail: kakol@plpuam11

