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TENSOR PRODUCTS AND 039B0- NUCLEAR

SPACES IN P-ADIC ANALYSIS

A.K. Katsaras

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.155-168

Abstract. The Ao-nuclearity of the topological tensor product of two Ao-nuclear spaces
is studied. This problem is related to the question of whether the operator Ti ~ T2 is

Ao-nuclear when Ti and T2 are Ao-nuclear.

1991 Mathematics subject classification : 46S10.

0. INTRODUCTION Throughout this paper, K will be a complete non-Archimedean
valued field whose valuation is nontrivial.

As it shown in [I], if E, F are locally convex spaces over K, then E ~,~ F is nuclear iff
E, F are nuclear. In this paper we study the analogous problem for the Ao-nuclear spaces
which were introduced in [7]. We show that the question is related to each of the following
two equivalent conditions :

(1) If Ti : Ei ~ Fi, T2 : E2 ~ F2 are Ao-nuclear operators, then T1 ~ T2 : El fil) 11’ E2 ~
Fi 8?r F2 is Ao-nuclear.

(2) If E Ao = Ao(P), then there exists a bijection 03C3 = (03C31, 03C32) : N --i N x N such
that

Ao

In case the Kothe set P is countable, it is shown that the above conditions are equivalent
to : .

(3) For each a E P there exists 03B2 E P such that Supn 03B1n2 / 03B2n  oo.

1. PRELIMINARIES

By a Kothe set we will mean a collection P of sequences a = (an) of non-negative
. real numbers with the following two properties :

(i) For every n E N there exists a E P with 0.
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(ii) If a, a’ E P, then there exists /3 E P with a, a’  ~, where a  ,Q means that
there exists d > 0 such that d03B2n for all n.

For a E P and ç = (çn) a sequence in K, we define pa(() = supn 03B1n|03BEn|. The

non-Archimedean Kothe sequence space A(P) = A is the space of all ~ E KN such that
 oo for all a E P. On A(P) we consider the locally convex topology generated by

the family of non-Archimedean seminorms (pa : a E P~. The subspace Ao = Ao(P) of
A(P) consists of E A(P) such that 03B1n|03BEn| ~ 0 for all a E P.The Kothe set P is called
stable if for each a E P there exists /3 E P such that supn 03B12n/03B2n  oo. By [5, Proposition
2.12~, if P is stable and if ~’, ~ E A (resp. E Ao), then

03BE * ~ = (03BE1, ~1, 03BE2, ~2,...) ~  (resp. 03BE * ~ E Ao).

The Kothe set P is called a power set of infinite type if

1) For each 03B1 P we have 0  On  03B1n+1 for all n.

2) For every a E P there exists /3 E P such that a2 « ;~.
If 03B3 = is an increasing sequence and if we take P = {(p03B3n) : p > 1},then P is a

a power set of infinite type. In this case we denote A(P) by If yn -+ oo, then for

A = we have A = Ao(see [3,, Corollary 3.5]).
Next we will recall the concepts of a Ao-compactoid set and a Ao nuclear map, which

are given in [5], and the concept of a Ao-nuclear space given in [7]. For a bounded subset A,
of a locally convex space E over K, and for a non-negative integer n, the nth Kolmogorov
diameter of A, with respect to a continuous seminorm p on E ( p E cs(E)), is the
infimum of all | |,  E K, for which there exists a subspace F of E, with dimF ~ n, such
that A C F + ~Bp ( o,1 ), where

Bp(0, 1) = {x E E : p(x)  1}.

The set A is called Ao-compactoid if, for each p E cs(E), there exists ( = ~p E Ao such that

03B4n,p(A) ~ |03BEn+1| for all n (or equivalently 03B1n03B4n-1,p(A) - 0 for each a E P). A continuous
linear operator T E -+ F is called :

a) Ao-compactoid if there exists a neighborhood V of zero in E such that T(V) is
Ao-compactoid in F.

b) Ao-nuclear if there exist an equicontinuous sequence ( f n) in E’, a bounded sequence
in F and (An) E Ao such that : :

00

Z’x = 03A3 03BBnfn(x)yn (x E E). .

n=i

For a continuous linear map T, from a normed space E to another one F, and for a
non-negative integer n, the nth approximation number lln(T) of T is defined by

lln(T) = inf{~T - A~ : A E 
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where An(E, F) is the collection of all continuous linear operators A : E --~ F with

dimA(E)  n.

Throughout the rest of the paper, P will be a Kothe set, which is a power set of
infinite type, and Ao = Ao(P).

Let now E be a locally convex space over K. For p E cs(E), we will denote by Ep the

quotient space E/kerp equipped with the norm = p(x). A Hausdorff locally convex

space E is called Ao-nuclear (see [7]) if for each p E cs(E) there exists q E cs(E), p  q,

such that the canonical map Eq --~ Ep is Ao-nuclear (or equivalently Ao-compactoid).
If E --+ Eq is the quotient map, then is the closed unit ball in Eq. It is

now clear that E is Ao-nuclear iff for each p E cs(E) the map ~p : E -+ Ep is Ao-nuclear.
Note that if P consists of the single constant sequence (1,1, ...), then Ao(P) = co and

so in this case the Ao-compactoid sets, the Ao-compactoid operators and the Ao-nuclear
operators coincide with the compactoid sets, the compactoid operators and the nuclear
operators, respectively. Also, if Ti : E --~ F, T2 : F -+ G are continuous linear maps and if
one of the T2 is Ao-compactoid (resp. Ao-nuclear), then Ti, T~ is Ao-compactoid (resp.
Ao-nuclear) ([5, Proposition 3.21 and Proposition 4.5]). But for normed spaces E, F the
class of all Ao-nuclear operators from E to F is not necessarily a closed subset of the space
of all continuous linear operators from E to F ([6, Corollary 3.7]).

We will denote the completion, of a Hausdorff locally convex space E, by E.
We will need a Proposition which is given in [4, Proposition 5.1]. For an index set I,

let co( I) be the vector space of all ( E h’1 such that ~~t) -+ 0, i.e. for each e > 0 the set

{i E I : |03BEi| > E} is finite. On co(I) we consider the norm = sup, |03BEi|.

Proposition 0.1 : : Let ( = (~i) be a fixed element of co(I) and consider the map

T : co(I) -~ co(I), (T ~)_ = (~_~~).

Then, for each non-negative integer n we have

on(T) = sup inf |03B6i|
iEJ

where Fn+1 is the collection of all subsets of 1 containing n + 1 elements.

2. ON THE Ao-NUCLEAR MAPS

For a fixed 03BE E co, the map T03BE : Co ~ co is defined by (T03BEx)i = for each x E co.

As it easy to see, if $ E Ao, then T is Ao-nuclear.

Proposition 2.1 : : Let E, F be locally convex spaces over K, where F is complete, and
let T : E --> F be a Ao-nuclear map. Then, there exist ~ E Ao and continuous linear maps
Tl E -+ co, T2 : co ~ F such that T = T2T03BET1.
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Proof : Let (an) E Ao, an equicontinuous sequence in E’ and (yn) a bounded
sequence in F be such that Tx = En 03BBnfn(x)yn for all x E E. Let |03BB| > 1 and choose
n E K such that | n| [   As it is shown in the proof of Theorem 4.6 in

[5], E Ao. Let ç = (çn) where 03BEn = 0 if pn = 0 and 03BEn = 03BBn -1n if 0. Then

(çn) E Ao. Define
Ti : ; E -3 co, Ti z = ( nfn(x)).

Let D = (T03BET1)(E). If D is the closure of D in co, then there exists a projection Q of co
onto D with ~Q~  |03BB| (see [10, Theorem 3.16]). Let S : D --3 F, S(T03BET1x) = Tx. Then
S is well defined and continuous. Let S D -~ F be the continuous extension of S and
define T2 : co -a F, T2 = SQ. Now T = T2T03BET1

Lemma 2.2 : : Let 03BE = (03BEn) E KN be such that |03BEn ~ |03BEn+1| for all n. If there exists a

permutation 03C3 of N such that (03BE03C3(n)) E Ao, then 03BE E Ao

Proof. Let ( = (~~(n~) and let T = T( : : Co -+ co. Since ( E Ao, T is Ao-nuclear. In view
of [5, Theorem 4.1], T is of type Ao and so there exists E Ao such that Qn(T)  | n+1|
for all n. Using Proposition 0.1, we get that on(T) = |03BEn+1|, which clearly implies that
~ E Ao.

Definition 2.3 : : Let Let ç = (çn) E KN. A sequence ( = (~n) is called a decreasing
rearrangement of ~’ if : :

for a~ ~t. .

b) There exists a permutation u on N such that (n = for all n.

It is easy to see that if ((n) and are decreasing rearrangements of ~, then =

for all n,

Proposition 2.4 : : Let Let 03BE = (03BEn) E co with 03BEn ~ 0 for all n. Then :
a) There exists a decreasing rearrangement of~.
b) If 03BE ~ 0 and if (03BE03C3(n)) is any decreasing rearrangement of 03BE, then (03BE03C3(n)) E Ao.

Proof : a) Let ni be the first of all indices k with |03BEk| = supm |03BEm| = maxm |03BEm|. Having
chosen nl, n2, ... , nm , let nm+l be the first index k ~ nl, n2, ... , nm with |03BEk| = max{|03BEn| :
n ~ ni , n2 , ... Let : N -+ N, o(m) = nm. We claim that (03BE03C3(n)) is a decreasing
rearrangement of 03BE. Since |03BEnmi > |03BEnm+1| for all m, it only remains to show that = N.

So, let mEN and suppose m ~ 03C3(N). For each kEN, since nl, n2, ... , nk-1, we

have This contradicts the fact that the set ~~,~ ( ~ ~ is finite.
b) It follows from Lemma 2.2.

Let § be the subspace of Ao consisting of all sequences in K with only a finite number
of non-zero terms. Suppose that Ao ~ ~ (this for instance happens when P is countable
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by [6, Remark 4,4]). If ( E 0B03C6 and if n E = supk~n |03BEk|, then E Ao and
0 for all n.

Proposition 2.5 : : Let E, F be locally convex spaces, where F is metrizable and let G
be a dense subspace of F. Let T E L(E, F) be Ao-nuclear and suppose that P is stable
and that ~Ao ~ ~. Then, there exist (çn) E Ao, an equicontinuous sequence (gn) in E’ and
a bounded sequence (zn) in G such that

Tx = 03A3 03BEngn(x)zn (x E E)
n

Proof : Let (pm ) be an increasing sequence of continuous seminorms on F generating
its topology. Since G is dence in F, we may assume that F is complete. Let (An) E Ao,
0  Since T is Ao-nuclear, there exist E Ao, (hn) an an equicontinuous
sequence in E’ and a bounded sequence ( yn ) in F such that T x . We

may assume that 1 for all n. For each positive integer n, there are unique positive
integers k, m such that n = (2m - 1)2k-1. Set 03BE(k)m = 03BB(2m-1)2k-1. Choose z(k)m E G such
that

max{pm(z(k)m - yk), pk(z(k)m - yk)} ~ |03BE(k)m+1|.
Set = z(k)1 and w(k)m = z(k)m-1 if m > 2. For all k, we have yk = limm~~ z(k)m.
Indeed, let n E N. If m > n, then

yk) ~ I ~~ 0 as m - oo.

Since 03A3mi=1 03C9(k)i = we have that yk = Thus, for all x E E, we have

Tx = 03A3 khk(x)yk = 03A3 03A3 khk(x)w(k)m.
k k m

Let = = l.For m > 2, let = ~m = ~m . The set :

m > 2, kEN} is bounded in G. In fact, let n E N. If k > n, then

= yk)I
 max{|03BE(k)m+1|, |03BE(k)m| = |03BE(k)m|.

Similarly, for m > n, we have

pn(w(k)m ~ max{pm(z(k)m-yk),pm-1(z(k)m-1-yk)}~ |03BE(k)m|.
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Also, the set ~v~k~ : k E N~ = E N~ is bounded since, for n C N and k > n we
have

  

and so supkpn(z(k)1)  oo since (yk) and (Am) are bounded. Let

~n1 r~2...}=~(2rrt-I)2k I:kEN,m>2}.

For i . E N, set 03BEi = fi = hk and z; = v(k)m if n= = (2m --1)2k"i. Since every
subsequence of (An) is in Ao and since 1 for all k, it is clear that / = (~’_) E Ao. Let

(k = k, 03C9k = z(k)1. If ( = (03B6k) then 03BE * ( Ao since P is stable. Moreover

Tx = 03BE1f1(x)z1 + + 03BE2f2(x)z2 + 03B62h2(x)w2 + ....

This completes the proof.

Proposition 2.6 : : Let F be a dense subspace of a Hausdorff locally convex space over
K. Then, E is Ao-nuclear iff F is Ao-nuclear.
Proof : In view of [7, Proposition 3.4], a locally convex space M is Ao-nuclear iff every
continuous linear map from M to any Banach space G is Ao-nuclear. Now the result
follows easily from this and the fact that every continuous linear map, from F to any
Banach space, has a continuous extension to all of E.

3. TENSOR PRODUCTS AND Ao-NUCLEAR SPACES

Proposition 3.1 : : Let P be countable. Then, the following are equivalent :
(1) P is stable.
(2) For all ~, r~ E Ao we have ~ * q E Ao.
(3) For every ~ E Ao we have ~ * ~ E Ao.
(4 ) If ~, r~ E Ao, then some rearrangement of the sequence ~ * r~ is in tlo.
(5) If 03BE E Ao, then some rearrangement of 03BE * 03BE is in 0.

Proof : (1) implies (2) by [5, Proposition 2.12].
(3) ~ (4). Let (n E K, |03B6n| = max{|03BEn|, |~n|}. Then ( = ((n) E Ao. Since ( * ( E Ao,

it is clear that ~ * r~ E Ao.
(5) ~ (1). Let |03BB| > 1. Without loss of generality, we may assume that P = {03B1n :

n 03B1n+1.

Suppose that P is not stable and let a E P be such that supn 03B12n/03B2n = oo for every
/? E P. Choose indices ni  n2  ... such that 03B12nk/03B1(k)nk > k for all k. There are ak E K
with

 |03BBk|.
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Let no = 0 and for nk-l  n _ nk set 03BEn = Àk. Now, for every k we have |03BBk|.
Moreover 03BE = (çn) E Ao. In fact, if ko E N, then for k > ko we have

I ~ 03B1(k)nk|03BEnk | ~ |03BB|/k ~ D.

By our assumption (5), there exists a rearrangement of the sequence (yn) = ~ * ~ which
belongs to Ao. This, and the fact that |03B3n+1| for all n, imply that E Ao (by
Lemma 2.2). But = 1, a contradiction.

Proposition 3.2 : : Let P be countable and suppose that for each ~ E Ao there exists a
bijection 03C3 = (03C31,03C32) : N --+ N x N such that (03BE03C31(n)03BE03C32(n)) ~ Ao. . Then, P is stable.

Proof : Let ~a~ > 1. Without loss of generality, we may assume that P = {Qf~ : : n E
N}, (a~«~n~  for all n. Suppose that P is not stable and let a E P be such
that supn 03B12n/03B2n = oo for all ,Q E P. As in the proof of the implication (5) ~ (1) in

the preceding proposition, let no = 0  nl  ... be such that 03B12nk/03B1(k)nk > k and let

(k03B1(k)nk)-1  |03BBk|. If nk-1  n  nk, set 03BEn = ak. Then E Ao. By our

hypothesis there is some rearrangement of the sequence

(=(~~~1~~2~~1~~2~,~1,..)

which belongs to Ao. In view of Lemma 2.2, if is a decreasing rearrangement of (,
then Ao. Consider the sequence

(51~1~ ~2~1~ S2S2~ ~1~2~ ~3~1 ~ ~1~3~ ’.. ~l~n)...)

and let be a decreasing rearrangement of ~. Then |03B4k| ~ |03B3k| for all k. In fact, suppose
that l > Ilkl for some k. Then |03B41| ~ |03B42| > ... ~ |03B4k| > Since  |03B4k|
for all m > k, we must have that

~s~~...,~k~ c ~y~,...,~yk_1}

which clearly is a contradiction. Thus, |03B3k| for all k, and so E Ao. let

 E K, | | = |03BE2|}, and consider the sequence

(~)==(~1~2~2~3~...)=~.

Since |~n| > | 03BBn| for all n, there exists some rearrangement of (an) which belongs to Ao
and so (an) E Ao since |03BBn| ~ |03BBn+1| for all n. Since 03B12nk|03BEnk ~ 1, we got a contradiction.
This clearly completes the proof.

Proposition 3.3 : : Consider the following conditions :
(I) For each a E P there exists ,Q E P such that supn anz  oo.
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(2) If E Ao, then there exists a bijection (7 = (~1, ~2) : : N -+ N x N such that
E l~o.

(3) H  E Ao, then there exists a bijection a~ = (~1, ~2 ) : : N --~ N x N such that
(~oi(n)~o2(n)) ~ Ao.

Then (1) ==~ (2) ==~ (3). . If P is countable, then (1), (2), (3) are equivalent.
Proof : ( 1 ) ~ (2). Let 03C3 = (Ql, 02) N ~ N N be defined as follows : Let o( 1) _ (1,1).
For j = ~l +2+...+(n-1)~+k = n 2 1 +k~l  k  n, let o(~) = (kan+1-k).
Then (An) = E Ao. In fact, let a E P. Our assumption on P implies
that P is stable. Thus, there exists 03B2 E P such that supn03B12n2/03B2n = d  oo. Let

di > 0 be such that |~k|  dl for all k. Let E > 0 be given and choose no such
that 03B2k|03BEk|, 03B2k|~k|  ddl if k > ko. Let now j > m(m-1) 2, where m > 2ko, and let
j = ’~ 2 1 +k,1  k  n. Clearly n > m. We have that either k > n+1 or n+1-k > ~1.
If, say, k > n+1 2, then j  n(n+1) 2  2k2 and d103B12k2|03BEk| ~ d1d03B2k|03BEk|  E
since k > ~ > ~~. > ko. The same happens when n + 1 - k > Thus, for

j > "~ 2~1 , we have ~  E, which proves that (an) E Ao.
Assume next that P is countable and that (3) holds. Let ~~~ > 1. Without loss of gen-

erality we may assume that From : Athanasios Katsaras ¡akatsar@cc.uoi.gr¿ Organization :
University of Ioannina Computer Center Dourouti, Ioannina, Greece 45110 tel : +30-651-
45298, fax : +30-651-45298 Date : Wed, 12 Oct 94 12 :32 :30 +0200 To : escassut@ucfma,
katsara@cc.uoi.gr

P = {03B1(n) : n = 0,1, ...}, [03B1(n-1)]2 ~ a(n), 03B1(n+1)

03B1(0)1 ~ 1. Suppose that (1) does not hold and let a E P be such that supn03B1n2/03B2n = oo
for all /3 E P. Let ( n k ) be a sequence of natural numbers, with n k > 2n k_ 1, , such that

an2 > k2 for k =1, 2, .... Choose ~k E K with

 (k03B1(k-1)nk)-1  |03BBk|.

Let no = 0 and, for n k-i  n  nk, let ~n = ak. If k > ko + 1, then

= |03BB| k ~ 0 as k -> oo.

This proves that (03BEn) ~ Ao. Also,

|03BEnb+1|~|((k+1)03B1(k)nk+1)-1~(ka(k-1)nk)-1~ |03BEnk |.

Let Ik = {n :  n  nk}. If i, j ~ Ik, then = |. Let

( = ~1~2~ ~2~is ~1~3, ~2~2~ Ç3ÇI,’..)
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and let ~ = (~1, ~2,...) be the sequence which we get by writing first those with

jTi , then those i, j C 12 e.t.c. Clearly |~1| > |~2| > . - By our hypothesis (3), there
exists a rearrangement, of the terms of the sequence (, which belongs to Ao. This implies
that any decreasing rearrangement of ( also belongs to Ao. Now, for every k, we have

| k| > |~k|. In fact, if | k|  for some k, then

{~1~2,...~~} C {~1~2~..~-i}.

a contradiction. Hence | m| ~ |~m|, for all m and so C Ao. The number of the terms

03BEi03BEj, with Ik, is (~k - ~k-1)2. Let mi = n21,mk = mk-i + (~k-~k-1)2 for k > 2.

Since n k > we have nk - nk-i > nk 2 and so m k > n2k 4. In view of Proposition 3.2,
there exists {3 6 P and p. ~ K with 03B14n/03B2n  for all n. Now

03B2mk |~mk| = 03B2mk|03BEnk |2 ~ | |-103B14mk |03BEnk|2

>M’~~J~H"~~~J’

which contradicts the fact that (7~) Ao. This clearly completes the proof.

Proposition 3.4 : Let 03C8 : Co x Co ~ co(N x N) be defined by = for

z = =(~). Then
is a continuous bilinear map and = 

~2) Co0~co 2014~ co(N x ~V) is the corresponding linear map, then is an isometry
and D = 0?r co) is dense in co(N x N).

(3) The continuous extension w c0~03C0c0 ~ co(N  N) of 03C8 is an onto isometry.

Proof : (1) It is trivial.

(2) Let u c0~03C0c0 and let p the norm on c0 and set ~.~ = p~03C0p. If u = 03A3mk=1xk~03C0yk,
then

t~(u))! ~ max )~(~~ 0 = max = 

and so )H!. On the other hand, given 0  ~  1, there are t-orthogonal elements

~B ... ,~/~ of Co and ~B ... ,~ E Co such that u J?~ 8) Thus

_ 

n

1 1
’~ t=i

= sup[sup |x1iy1j + x2iy2j + ... xniynj|]
’ j

~ t sup max 
1~k~n
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Since 0  t  1 was arbitrary, we have that (lr~(u)~~ > Ilull and so = Hull. To see
that D is dense in co(N x N), let w = (03BEij)i,j e co(N x N) and let f > 0. Choose m such
that I  E if i > m or j > m. Let wo = with = ~i~ if i, j  m and = 0 if
i > m or j > m. Then wo E D and IIw - woll  f.

(3) If u E then there exists a sequence (u(n)) in Co ~03C0c0 converging to u. Now

= lim~03C8(u(n))~ = lim ~u(n)~ = ~u~

and so u is an isometry. This and the fact that 03C9(c0~03C0c0) is dense in co(N x N) imply
that 03C9 is onto.

Proposition 3.5 Let E, F be locally convex spaces over K, E, F ~ {0~. . If E 0 F is
Ao-nuclear, then E and F are Ao-nuclear.

Proof. Since E ®,~ F is Ao-nuclear, it is by definition Hausdorff which implies that both
E and F are Hausdorff. Let now p e cs(E) and choose yo E F and q E cs(F) such that
q(yo) # 0. Since E ~,~ F is Ao-nuclear, there exist (by [7, Proposition 3.4]) E Ao and
an equicontinuous sequence hn in (E ~,~ F)’ such that

p 0 q(u) ~ sup |03BBnhn(u)| I (u E E ~03C0 F).
n

Let f n E ~ K, fn(x) = hn(x ® yo). Then (In) is an equicontinuous sequence in E’. Let
~ E K with q(yo) > Then

p( x)  | | sup |03BBnfn(x)| I (x E E)
n

Thus E is Ao-nuclear (by [7, Proposition 3.4]). The proof of the Ao-nuclearity of F is
analogous.

If E1, E2, F1, F2 are locally convex spaces over K and if Ti ; Ei -> Ft, i = 1, 2, are
linear maps, then Ti ~ T2 Ei 0 E2 --~ Fi ® F2 will be defined by

TI ® ~ y) = Ti(x) ~ 

We will denote by F) the collection of all Ao-nuclear operators from E to F. Recall
also that for 03BE E co, co ~ co is defined by = 03BEkxk.

Theorem 3.6 : : Consider the following properties :
(I) If E1, E2, F1, F2 are locally convex spaces over K, where Fl, F2 are Hausdorff, and

if T; E = 1, 2, then Tl ~ T2 E N0(E1 ~03C0 E2, F1 ~03C0 F2).
(2) If 03BE, ~ E Ao, then T03BE ® T~ E N0(c0 ~03C0 c0, co ~03C0 co).
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(3) If 03BE E Ao, then T03BE ® T03BE E N0(c0 ~03C0 c0, co ~03C0 co).
(4~ If E Ao, then there exists a bijection o = (Q1, QZ) : N -~ N x N such that

Ao.
(5) If 03BE ~ Ao, then there exists a bijection o = (03C31, 03C32) : N ~ N x N such that

Ao.

(6) If E, F are Ao-nuclear spaces, then E ®,~ F is Ao-nuclear.
Then, (I)-(5~ are equivalent and they imply (6~.

Proof : Since, for ~ E Ao, T~ is Ao-nuclear , it is clear that (1) implies (2).
(3) ~ (4) Let n E K with | n| = max{|03BEn|, |~n|}. Then ( = E Ao. If there exists

a bijection 03C3 = (03C31, 03C32) : N ~ N x N such that (03BE03C31 (n)~03C32(n) E Ao, then (03BE03C31(n)~03C32(n) E Ao.
Thus, we may assume that ~ = r~. If now ~ has only a finite number of nonzero terms,

then it is clear that (~o~ (n)?~~~(n) E Ao for any bijection a~ = (7i,T2) : : N --~ N x N. So,
we may assume that the set {n : 0} is infinite. If n E K, | n| = supk~n |03BEk|, then

E Ao. It is clear that if we prove the result for then it would also hold for ~.
Thus, we may assume that 0  for all n. Let T = T~. By our hypothesis
T 0 T ~ N0(c0 0w co, co ~03C0 co). Let t.J) c0~03C0c0 ~ co(N x N) be the onto isometry in
Proposition 3.4. Since T0T is Ao-nuclear, the same is true with the continuous extension
TT : c0~03C0c0 ~ c0~03C0c0. In view of [5, Proposition 4.5], the map

S = co(N x N) --~ co(N x N)

is Ao-nuclear. It is easy to see that for every w = co(N x N) we have S(w) =
(03BEi03BEj03C9ij). Let

(=(~1~1~~1,~3~2~~3~1,...)
and let be a decreasing rearrangement of (.

It is clear that there exists some bijection a = (~1, ~2} : : N -~ N x N such that
n = for all n. So it suffices to show that ( n) E Ao. If is the family of

all subsets J of N x N containing n + 1 elements, then

sup (
J~Fn+1

by Proposition 0.1. Since for all k, it is clear that an(S) = | n+1|. Thus
Ao since S is Ao-nuclear and hence of type Ao (see[5, Theorem 4.2J). This completes

the proof of the implication ( 1 ) =~ (4).
(5) ~ (1). Let E1, E2, F1, F2, T1, T2 be as in (1). Since Ti : El ~ Fl and T2 : E2 ~ 2

are Ao-nuclear, there are (by Proposition 2.1) y = (~n), b = (6n) E Ao and continuous linear
maps S1 : E1 ~ co, 52 : Co ~ Fi, H1 : E2 ~ co, H2 : Co ~ F2 such that

T1 = S2T03B3S1 and T2 = H2T03B4H1.
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Now
Ti ® T2 = (s2 ® ® ~ H1).

In order to show that Ti ® T2 is Ao-nuclear, it suffices (by [5, Proposition 4.5]) to show
that

is Ao-nuclear. For this, it is enough to show that the continuous extension

S : c003C0c0 --; c003C0c0

is Ao-nuclear. Let w : co~~co --~ co(N x N) be the onto isometry defined in proposition
3.4 and let

H = ~~"~ : co(N x N) - co(N x N)

Since S = it suffices to show that His Ao-nuclear. It is easy to see that (5) implies
(4). Thus, our hypothesis (5) implies that there exists a bijection o = (ri, cr~) : N --~ N x N
such that Ao. For each n E N, let f n E co(N x N)’ be defined by
fn(w) = and let E co(N x N), where = 1 if (i,j) = and z~n) - 0
if (i,,~) ~ u(n). Now, (z(’~)) is a bounded sequence in co(N x N), ( f n) an equicontinuous
sequence in co ( N x N ) and

00

H( w) = , ~n .

n=l

Thus H is Ao-nuclear, which proves the implication (5) =~ (1).
(1) ==~ (6). Let p, q be continuous seminorms on E and F, respectively, and r = p0 q.

Consider the canonical linear isometry

Since E, Fare Ao-nuclear, the quotient maps

~p : E -~ Ep and 

are Ao-nuclear and so the map

~~®~q:E®~~’-~Ep~~Fq

is Ao-nuclear. It follows that the map

f =:ho(~p®~q)~~®~rF’"’;(j,’~~’)r

is Ao-nuclear. Since f is the canonical surjection, it follows that E ®,~ F is Ao-nuclear.
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In view of Proposition 3.3, we have the following

Corollary 3.7 Consider the following property for P : :

(*) For each a E P there exists 03B2 E P such that supn 03B1n2/03B2n  ~. Then

a) If (*) holds, then (I)-(6) of the preceding Theorem hold.

b) If P is countable, then property (*) is equivalent to each of the (I)-(5) in the

preceding Theorem.

Proposition 3.8 Let A = where I = (In) is not bounded. Then, the following
are equivalent :

(1) supn 03B3n2/03B3n  00.

(2) If 03B6, ~ E A = Ao, then there exists a bijection o = (03C31, 02 : N ~ 1’V x N such that

A0.

Proof : (1) ~ (2) Let d = SUPn 03B3n2/03B3n. Then d > 1. Given p > 1, let 03C11 = pd. Then

03C103B3n2/03C103B3n1  03C1d03B3n /03C103B3n1 =1. .

Now the implication follows from Proposition 3.3.

(2) =~ (1) If a(m) - (m1’n), for m = 2,3,... and if P = {a(m? : m > 2}, then
Ao = Ao(P). In view of proposition 3.3, for each a E P there exists 13 E P such that

sup" 03B1n2/03B2n  ~. Hence, there exists rn > 2 such that supn 203B3n2 /m03B3n  ~. Suppose now

that supn ynz /03B3n = ~. Choose indices nl  n2  ... such that 03B3n2k /03B3nk > k. If 2k > rn,

then 
’

, 2 2k 2k
203B3n2k/m03B3nk ] ()nk >  ~ ~ as k ~ ~,,

a contadiction.
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