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MINIMAL-HAUSDORFF p-ADIC LOCALLY

CONVEX SPACES

W.H. Schikhof

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.259-266

ABSTRACT. In this note we characterize, in various ways, those Hausdorff locally
convex spaces over a non-archimedean valued field K that do not admit a strictly weaker

Hausdorff locally convex topology (Theorems 7 and 9.2). Our results extend the ones
obtained by N. De Grande-De Kimpe in [I], Proposition 8-11, for spherically complete
K. For an analogous theory for compactoids instead of locally convex spaces we refer
to [6].

1991 Mathematics subject classification: 46S10

PRELIMINARIES. Throughout K is a complete non-archimedean valued field whose

valuation I [ is non-trivial. All spaces are over K. We will use the notations and

terminology of [2] for Banach spaces and of [7] and [3] for locally convex spaces. In

particular, for a subset X of a locally convex space E we write (X~ for the linear span of
X and X for the closure of X. The algebraic dual of E is denoted by E*, its topological
dual by E’. For locally convex spaces E and F the expression E ~ F indicates that E

and F are linearly homeomorphic (‘isomorphic’). The completion of a Hausdorff locally
convex space E is denoted E :

We will say that a subspace D of a locally convex space E is topologically com-

plemented if there exists a subspace S of E such that S x D E is a linear home-
omorphism or, equivalently, if there exists a continuous linear projection of E onto
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D.

i. A (non-archimedean) seminorm p on a vector space E is called of finite type if
Ep := E/Ker p is finite-dimensional. A locally convex space E is called of finite type if
each continuous seminorm is of finite type or, equivalently, if there is a generating set
of seminorms of finite type.

One verifies without effort that the class of locally convex spaces of finite type
is closed for the formation of products, subspaces and continuous linear images (in
particular, quotients). If a Hausdorff locally convex space is of finite type then so is its

completion.
Recall ([4]) that a subset X of a locally convex space E is a local compactoid in E

if for every zero neighbourhood U in E there exists a finite-dimensional subspace D of
E such that X C U + D.

2. THEOREM. For a locally convex space E = (E, r) the following are equivalent.
( a ) E is of finite type.
(,Q) r is a weak topology.
(i) E is a local compactoid in E.

Proo f. (a) ~ (~). We prove that r is equal to the weak topology o := u(E, E’).
Obviously, q is weaker than r. Conversely, let p be a r-continuous seminorm on E.

By finite-dimensionality of Ep there exists an n E N and f l, ... , f n E E* such that
q : : x max ( is equivalent to p. Then f I , ... fn are r-continuous, hence 03C3-

continuous, so is q and is p. It follows that r is weaker than Q.

(/3) ~ (,). Let U be a zero neighbourhood in (E, r), By (03B2) there exist an ~ > 0 and
E E’ such that U D  E}. So, U contains H := n; Ker f t,

a space of finite codimension. Let D be a complement of H. Then D is finite-dimensional
and E C H+D C U+D.

(~y) ~ (a). Let p be a T-continuous seminorm on E, let D be a finite-dimensional

subspace of E such that E C {x E E p(x)  1 }+D. The seminorm x ~ inf03B1~D p(x-d)
is smaller than p, hence is r-continuous, it is bounded on E, hence it is identically zero
i.e. E is in the closure of D with respect to the topology induced by p. Now D + Ker p
is closed in that topology, so E c D + Ker p so that Ep = E/Ker p is finite-dimensional.
.

3. COROLLARY. If every countably generated subspace of a locally convex space E =

(E, T) is of finite type then so is E.
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Proof. Let p be a continuous semi norm on E, let X be a countably infinite set in Ep,
let 7r : : E --; Ep be the quotient map. Select a countable set Y C E with x(Y) = X. . By
assumption ~Y~~ is of finite type so there is a non-trivial linear combination of elements of
Y’ in Ker p. Applying x we can conclude that X is not linearly independent. It follows

that Ep is finite-dimensional. N

4. If the topology T of Theorem 2 is Hausdorff we may add the following equivalent
statement to (a) - (1).

(b’) E is linearly homeomorphic to a subspace of h’1 for some set I.

Indeed, the map x ~ (f(x))f~E, is an injection (E, T) -+ KE’ . If (03B2) holds it is a

topological embedding and we have (3) ===~ (6). To arrive at (6) ===~ (a) observe that

products and subspaces of spaces of finite type are of finite type..

s. For an index set I, the spaces KI (with the product topology) and K(I) := {x E
~; ~ ~ only for finitely many i E I} (with the strongest locally convex topology)

are easily seen to be strong duals of one another via the pairing (x,y) = 03A3i~Ixiyi
(:r E y E Both spaces are complete. Let D be a closed subspace of Since

K1 is strongly polar ( [3] 4.5(iv)) there is a subspace S of K(I) such that D = S° := {y E
KI : (a, y) = 0 for all x ~ S}. This S is automatically closed and isomorphic to K(J1)
when Ji is the cardinality of an algebraic base of S. S has an algebraic complement
T which is again closed and isomorphic to for some index set J2. Then, S is

topologically complemented and from S x T one deduces T’ ~ KJ2 and

SO x T°. We have found the following.

PROPOSITION. Closed subspaces of k’I are again linearly homeomorphic to a power of
K, and are topologically complemented. Quotients of KI are again linearly homeomor-

phic to a power of K. []

e. A Hausdorff locally convex space ( E, r) is said to be minimal if for every Hausdorff

locally convex topology r’ weaker than r we have r’ = r. Our aim is to prove Theorem

7 below.

e.i. A minimal space is complete. Proof. Let (Ei T" ) be the completion of a minimal

space (E, r). Suppose there exists an x E we derive a contradiction.. The space
h’x is closed so the quotient topology on is Hausdorff, let 7r : : E" -~ be

the quotient map. 1r is injective on E. Now let i ~ xi be a net in E converging to x
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with respect to r : Then it does not converge in (E, r) while 03C0(xi) ~ 0. Hence, 03C0|E is
not a homeomorphism conflicting the minimality of E..

8.2. A closed subspace of a minimal locally convex space is minimal.
Proof. It suffices to prove the following. Let D be a closed subspace of a Hausdorff
locally convex space (E, r), let v be a locally convex Hausdorff topology on D such
that v  r ~ D. Then there exists a Hausdorff locally convex topology vi on E such
that vi ~ D = v and vi ~ r. To this end, let vi be the topology generated by all
r-continuous semi norms p on E for which p D is v-continuous. Then obviously vi  r

and vi ~ D  v. Every v-continuous seminorm on D can in a standard way be extended
to a r-continuous seminorm on E so we have also v1 | D ~ v. Finally, to see that vl
is Hausdorff, let a E E~D; it is enough to find a vi-continuous seminorm separating
{0 } and {a}. . Now D is r-closed so there is a r-continuous seminorm p such that

inf {p( a - d) : d E D ) > 0. Then the formula

= inf{p(x - d) : d E D}

defines a r-continuous seminorm q for which q(a) > 0. This q is automatically t/i-

continuous since q D = 0. N

e.s. A minimal topology is of finite type. Let (E, r) be minimal. By Corollary 3 it
suffices to show that, for any countable .x C E, the space D := ~X~ is of finite type.
From 6.2 we obtain that (D, r ~ D) is minimal. Now D is of countable type hence is a
(strongly) polar space ([3] 4.4) so that its weak topology is Hausdorff. By minimality
r D equals this weak topology and therefore is of finite type (Theorem 2)..

We can now prove our main Theorem.

7. THEOREM. For a Hausdorff locally convex space E = (E, r) the following are equi..
valent.

( a ) E is minimal.

(Q) For every Hausdorff locally convex space X and for every continuous linear map
T E --~ X the image TE is closed (complete ).

("/) For every Hausdorff locally convez space X, every surjective continuous linear map
T : E - X is open.

(b) E is complete and of finite type.
(e) E is a complete local compactoid.
(() E is linearly homeomorphic to a closed subspace of some power of K.
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(r~) E is linearly homeomorphic to a power of K.

Proo f. we have (a) ~ (6) by 6.1 and 6.3, (b} ~ (E) by Theorem 2, (~) ~ (~) from
4, and (() ==~ from 5. Next, we prove (r~) =~ (a). Let r be a Hausdorff locally
convex topology on K I, weaker than the product topology. Then ( h’ 1, r )’ is a subspace
of F := (kI)’ ~ K(I). As r is Hausdorff, r)’ is KI)-dense in F. But every
subspace of F is kI)-closed so that (KI, T)’ = F i.e. T) and h’I have the
same dual space. Since both r and the product topology are weak topologies (Theorem
2) it follows that r equals the product topology. We conclude that the product topology
is minimal.

At this stage we have proved the equivalence of (a), (b}, (~}, ((), (ry). To prove (a) ==~ (,Q)
and (a) ==~ (1) we factorize T in the obvious manner:

E -~ TE

B7r ~T1
E/KerT

From the equivalence (o;) 4=~ (r~} and 5 it follows that the quotient E/Ker T is also
minimal, so Ti is not only continuous but also open implying that T is open and that
TE ~ E/Ker T is complete. Obviously, (1) ~ (a). Finally we prove (Q) ~ (6). It

suffices to prove that E is of finite type. Suppose E is not. Then we could find a

continuous seminorm p such that Ep is infinite-dimensional. By (~3), Ep is a Banach
space with respect to the norm p induced by p. Now we can find a seminorm q  p on

Ep that is not equivalent to p (for example, let el, e2, ... E Ep be a 2-orthogonal set
with respect to p, bounded away from zero. Then the formula

q1(03BBnen) = 1 2 max{|03BBn| np(en) :n ~ N}
defines a nonequivalent norm qi on the p-closure D of [[e1, e2, ...]]; next extend ql to
a norm q on Ep by the formula q(x) = inf{max(q1(d),p(x - d)) : : d E D}}. Then by
Banach’s Open Mapping Theorem the space (Ep, q) is not complete and the image of
the map E --> (Ep,p) --~ (Ep,q) --~ is not closed, a contradiction..

REMARK. If r is a Hausdorff vector topology on K I (not necessarily locally convex)
weaker than the product topology then these topologies coincide. Thus, K I is also

"minimal in the category of topological vector spaces". The above proof of ===~ (a)
applies with only obvious modifications.
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8. Let K be spherically complete. Then we may add the following equivalent condition
to (a) - (~) of Theorem 7.

(9) E is c-compact.

Indeed, we have obviously {r~) =~ (6) and (8) =~ (/3). t!

9. If K is not spherically complete the only space satisfying (9) is {0}. On the other hand
we have seen in Theorem 7 that minimal spaces still behave very much c-compact-like.
The next Corollary further confirms this idea.

9.1. COROLLARY.

(i) The product of a collection of minimal spaces is minimal.

(ii) A closed linear subspace of a minimal space is minimal.

(iii) A Hausdorff image of a minimal space under a continuous linear map is minimal.

(iv) Let a minimal space E be a subspace of 30me locally convez space .x’ such that X’
separates the points of X. Then E is topologically complemented in X.

Proof. (i), (ii) and (iii) are obvious consequences of 7 and 5. To prove (iv), let u be
the weak topology 03C3(X, X’), which is Hausdorff by assumption. The inclusion map

Q) is continuous, hence, by minimality, a homeomorphism onto i(E). Now

X^ := (X,03C3)^ is complete and of finite type hence, by Theorem 7 and 5, there is a
continuous projection P : X^~ E whose restriction to X is the required one. []

Finally we prove a characterization of minimal spaces that resembles very much the
definition of c-compactness (also compare [5] §5).

9.2. THEOREM. For a Hausdorff locally convez space E = (E,T) the following are

equivalent.

(a) E is minimal.

(,D) If : i E I } is a collection of closed linear manifolds in E with the finite inter-
section property then ns C= ~ ~.

Proof. (a) ~ (~3). ~Ve may assume that E = h’j for some set I. Using the duality of
5 we may write Ci = f + D? where, for each i E I, f i E h’1 = (~i’~I ~ )’ and D; is a
subspace of The finite intersection property ensures that (we may assume that)
the collection of the D=’s is closed with respect to finite sums. The formula

= f ={x) if i E E D=
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is easily seen to define a map on U Di which is linear and can be extended to a

linear function f on K(I). Then f ~ E and, for each i E I, f = f on Di so that f E Ci.
Hence f E ni C~ and we have (/3).
(/3) =~ (a). First, let E be a normed space satisfying (,3); we prove that E is finite-
dimensional. In fact, if E were infinite-dimensional we could find a 2-orthogonal se-
quence el, ez, ... in E with inf{~en~ : n E N} > 0. Set Cn := m > n].
Then each Cn is a closed linear manifold, Ci D C2 3 ..., but one proves easily that

~n Cn = Ø.
Now let E be an arbitrary space satisfying (/?); we shall prove that E is of finite type
and complete (than we are done by Theorem 7). If p is a continuous seminorm then

the normed space Ep is easily seen also to satisfy (/3) so, by the above, Ep is finite-
dimensional implying that E is of finite type. To prove completeness, assume that E
is infinite-dimensional, and let x E E". For every convex neighbourhood U of x in

E", let Hu be the largest linear manifold in U that contains x. Then Hu is closed.

Since .E" is of finite type each Hu has finite codimension. Then so has Hu n E, in

particular Hu n E ~ 0 for each convex neighbourhood U of x in E". If U, V are convex

neighbourhoods of x in E" then Hunv = Hu n Hv. Thus, {HU n E : U is convex

neighbourhood of x in E") has the finite intersection property, so its intersection is not

empty by (Q). From

u t/

we infer that x E E. It follows that E is complete...
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