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REPRESENTATIVE SUBALGEBRA OF A COMPLETE

ULTRAMETRIC HOPF ALGEBRA

Bertin Diarra

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.99-115

ABSTRACT. Let (H, m, c, ~, r) be a complete ultrametric Hopf algebra over a complete ultrametric
valued field h’, e be the unit of H and k the canonical map of K in H. In order words, H is a Banach

algebra with multiplication m : : H®H --~ H, coproduct c : H -> H~H a continuous algebra
homomorphism, inversion or antipode ~ : H --i H a continuous linear map and counit 7 : H ~ K a
continuous algebra homomorphism. The coassociativity and countinary axioms hold, and

We define the representative subalgebra of H, i.e. the subalgebra of H generated by the

coefficient "functions" associated with the finite dimensional left H-comodules. Under some conditions on

H, R(H ) is a direct sum of finite dimensional subcoalgebras and is dense in H. But in general, R(H)
is not dense in H. The algebra T~(~) is a generalization of the algebra of representative functions on a
group. Notice that when the valuation of K and the norm of H are trivial, one obtains the well known

fact that H is equal to its representative subalgebra.

INTRODUCTION.
Let (H, m, c, r~, ~) be a complete ultrametric Hopf algebra over the complete ultra-

metric valued field K. An ultrametric Banach space E over K is said to be a left Banach

H -comodule if there exists a continuous linear map ~E : E -+ H®E, called coproduct,
such that
(i) (c 01E) o L~E = (lH 0 o ~E

(ii) 
A closed linear subspace E of E is a (left) Banach subcomodule of E if c

HM.
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Let (E, QE) and (F, A F) be two left Banach comodules. A continuous linear map
u : E --~ F is a Banach comodule morphism if OF o u = (IH ~ u) o ~E.

It is associated with any left Banach H -comodule (E, the closed linear subspace
of H spaned by the coefficient "functions" (1H ~ x’) o A(x), x’ E E’, x E E,

where E’ if the Banach space dual of E. Furthermore, let R(H) be the linear subspace of
H spaned by all the R(L1 E) where (E, AE) is a finite dimensional left H-comodule. Then
R(H) is a (non necessary closed)sub-Hopf-algebra of H ; 1(,(H) is called the representative
subalgebra of H. In general, ?Z(H) is not dense in H (cf. ~l~ or [5], ). However, with
additional conditions on H it will be shown that R(H) is dense in H.

If E and F are ultrametric Banach spaces over K, we denote by E~F the com-
plete tensor product, that is the completion of E ~ F with respect to the norm ~z~ =

Inf (max In the sequel all Banach spaces are ultrametric.
)

I - LEFT BANACH COMODULES

I - 1 Tensor products of left Banach comodules

Let (E, DE) and (F, OF) be two left Banach comodules. One has the continuous

linear map E®F --+ HEHF --> HHEF ~ HEF where
and 0 a) = ~0 ~.

Proposition 1 : 0394EF : E0F ~ F0E0F M &e coproduct of a left Banach H-

comodule structure on E~F.

Proof : Put, for x E E and y E F, = 03A3aj~xj E and 0394F(y) = L. bl~yl E
j>1 t>1

Therefore, one has @ y) = 03A3 ajbl ® x j ® yt.
j>1 t>1

(i) It follows immediately that (° ~ o @ y) = y~ Y~ °(ajbt)xj ~ yt =
j~1 l~1

- ® yt = 03A303C3(aj)xj ~ 03A3 03C3(bl)yl = x ~ y = 1EF(x ® y). From

j>1 t>1

what, one deduces (° ~ IE®F) o 
(ii) Also, one has for x E E, y E F

a) (c ® 1E) o DE(x) = ~ C(aj) ~ xj = ~ ~ ~ o9,j ~ x~ = (1H ® DE) o QE(x) =
j>1 

~ 

= 

j>1 j>1 k>1
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and

(C © lF) ° " £ c(bl) © $lI " £ £ 03B21t,l © 03B22t,l f§ 91 " (lH f§ 0394F) ° 4lF(Y) "
t>I I>I t>1 ~ 

* £ bl © 0394F(yl) " £ £ bt © pm,t © ym,l
I>i t>I m>I

Let Ez = E[(z ;, j > i) U (z k,; , k > I, j > I)] be the closed linear subspace of E spaned
by (z;, j > 1) u (zk,j, k > 1, j > I), and F, = E[(yi, £ > I) U (ym,i, m > I,I > I)] be the
closed linear subspace of F spaned by (yl, l > I, I > I ) . It is clear that the

Banach spaces Ez and F, are of countable type. Furthermore, if z’ e Eb and y’ E F§ one
has

= =

j~1 s~1

= (1H © I H © z’) o (1H © AE) o = £ £  z’, xk,j > aj © yk,;
j~1 k~1

and

(I H © I H © y’) O (C §§ I F) O A F(y) # £ £  y’, yf > Q§ i §§ Q#  °°n

>i t>1 
~ 

* ( l H © l H © Y’) ° (l H © 4lF) ° 4lF($l) " £ £  Y’, Ym,I > bt 6§ pm,I.
I>I m>I

#) On one hand, one has, ( c @ i O @ v) = £ £ c( ajbl) @ z; © vi =

= £ £ c( a ; )c(bi) l§ z j E9 vi = £ £ (£ E9 ai ;) (£ 03B21t,l l§ Qi ) ©z; © v.
s>1 

~ ~ 

t>i 
’ ’

On the other hand, one has
= = £ ££ I ajbl~

j>1 t>1 k>1 m>I

03B3k,j03C1m,l @ xk,l © ym,l.

Hence, if z’ e E£ and y’ E F§ ; ; first, one has
~ i I ~ "" "j ~ I I ~ Y" Yl ~

j~1 s~1 l~1 t~1

Q§,i © 03B22t,l = (lH §§ l H © z’) o (c © IE) o AE(z) . (1H ~ 1H © y’) o (c @ l F) o =

" (lH © lH © Z’) o (lH © 0394E) o 4lE(") o (1H ~ 1H f§ 9’) o (lH f§ 0394F) o 0394F(y).
And, second, one has

" £ £  Z’, Zk,j > aj~03B3k,j £ £  y’, ym,l
j>1 k>I I>I m>I

bl ~ 03C1m,l = (I H ~ 1H © z’) o (1H © AE) o AE(z) . (lH ~ 1H © y’) o (1H © AF) o 0394F(y).
Therefore, for any z’ e Eb and any y’ e F§, we have

(a) ~ " °

y) Since Ez [resp. Fy] is of countable type, there exist ao > 0, ai > 0 and
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C Ex (resp. C such that for z E Ez (resp. ~’ E Fy] one has
z = 03A303BBjej (resp. ~ = 03A3 lfl] with ao Sup  a f Sup ] (resp, ao Sup| l| 

j>1 ~>1 ~>1 ~>1 l>1

~03B6~ ~ 03B11 Sup | l|] (cf. [4] ).
l>1

Moreover, one has ExFy N co(IN* x lN*, h’) and 
N co(IN* x 1N*, H®H) (cf. [7]) ; any Z in (HH)(ExEy) can be written in the unique
form Z = 03A3 Ajl ® ej ~ fl with Ajl E HH and ao Sup ~Ajl~  ~Z~  a; Sup |Aj,l~.

Let ea E Ex [resp, f ~ E Fy~ be the continuous linear form defined by  e~, ejl >_
03B4jj1 [resp.  f’l, fl1 >= 03B4ll1]. Setting 
y) = Zo = 03A3 A0jl ~ ej ® fl E HHExFy, for any 1 and any l, by (a) , one

,j,l

has (1H ® I H ~ e’j1 ~ f y )(Zo) = 03A3 A0jl03B4j1j03B4l1l = Aoj1 l1 = U. It follows that Zo = 0, i.e.

(c o 0394EF(x ~ y) = (lH ~ 0394EF) o 0394EF(x ® y). From what, one deduces that
(c ® o = (1H ~ 0394EF) o 0394EF.

Corollary : Let :~1 ( resp. N ~ be a left Banach H.subcomodule of E ( resp. F ~. . Then

M®N is a left Banach subcomodule of E®F,

I - 2 Banach comodule morphisms

I - 2 - 1 Range and kernel

Proposition 2 : : Let u E --~ F be a Banach comodule morphism.
(i) If V is a Banach subcomodule of F, then is a Banach subcomodule of E.

(ii) The closure u(E) of u(E) is a Banach subcomodule of F

Corollary : Let V and W be Banach s’Ubcomodule of the left Banach H-comodule E ;
then V ~ W is a Banach subcomodule of E.

Proofs : Rather easy, or see (3~.

Note : One can also see [3] for the spaces of comodule morphisms.

Remark 1 : : If M is a Banach subcomodule of the le f t Banach H-comodule E, it is

induced on the quotient Banach space E/M a structure of Banach left H-comodule such
that the canonical map E --~ E/M is a comodule morphism.
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Then, if u : E -~ F is a Banach comodule morphism and if u is strict, the Banach
comodule E/keru and u(E) are isomorphic. Also, one can define the cokernel of u as being
F/u(E).

I - 2- 2 Comodule morphisms of E into H associated with ~ ; R{~)

Put 0 = !1E the coproduct of the left Banach H-comodule E. Obviously, H is a left
Banach H-comodule with respect to its coproduct c.

Proposition 3 : : For any x’ E E’, the linear map Ax’ = (1H ~ x’) o 0394 : E ~ H is a

Banach comodule morphism.

Proof : It is easy to see that = c~x’ = (1H~1H~x’)o(c~1E). Therefore
coAx~ = 

=(IH®~(1H®x’)o0~)o~=(1H®Az~)o~.

Corollary 1 :
{i) ker Ax’ is a closed subcomodule of E.

(ii) Ax’(E) is a left Banach subcomodule( = closed left coideal) of H .

Corollary 2 : : If E is a space of countable type, one has ker Ax’ ~ E for any

Proof : Indeed, if x’ E E’, x’ ~ 0 and 0  a  1, there exists a a-orthogonal
base C E such that  x’, e 1 >= 1 and  >= 0, j > 2. Moreover for

any j > 1, 0394(ej) = 03A3alj ® et and ej = ; therefore 03C3(alj) = 03B4lj and
1>1 ~>1

Ax’(e1) = (1H ® x’) o 0394(e1) = a11 ~ 0 since = 1.

Corollary 3 : : Assume that H is a pseudo-reflexive Banach space ; i.e. H -+ H" is
isometric.

Let E be a simple Banach left H -comodule, i.e. E contains no proper closed subcomo-
dule. Then E is a Banach space of countable type and Axt is injective for each x’ E

E’, , xi ~ 0.

Proof : If H is pseudo-reflexive, it is shown in (3~ that any simple Banach left H-
comodule is a space of coutable type. Applying Corollary 2, one sees that Ax~ is injective
for x’ E E’, x’~0 a

Let ,Q E ® E’ -+ K be the continuous linear form defined upon ~ x’ ) _  x’, x > .
Put po - (1H ® ,Q) o (0394 ~ 1E’) o T : : E’®E ~ H, where (x’ ® x) = x ® x’. Then

pa is linear and continuous with ~03C10394~  Moreover for x’ E E’, x E E, one has

03C10394(x’ ® x) = (lH ® x’) 0 0394(x).
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Put R(0) = 03C10394(E’E) the closure of 03C10394(E’E) in H. Obviously, R(Q) is the closed
linear subspace of H spaned by the elements 0 x’) o Q(x), x’ E E’, x E E, called the
coefficients of the comodule (E, A).

Proposition 4 : : R(A) = 03C10394(E’E) is a left Banach subcomodule (= closed left coideal)
of H.

Proof : Since c : H -; H®H is linear and is a homeomorphism of H onto c(H) , one
has c(R(0394)) = a closed linear subspace of H.

It remains to show that if a = 03C10394(x’~x) = = Ax’(x), x’ E E’, x E E;
then c(a) E Writing Q(x) = a j 0 Xj; one has c(a) = c o Ax’(x) = (l H ~

j~l

Ax’) o Q(x ) = a j 0 = 03A3 a j ~ 03C10394(x’ ® x j ) E 0
j>1 j>i

Proposition 5 : : If the le ft Banach comodules E and E1 with coproduct respectively L1
and 03941 are isomorphic, then R(A) = R(03941).

Proof : Let u : : jE 2014~ Ei be a comodule isomorphism, in other words, u is linear,
continuous and bijective with Ai o u = (l H ® u) o A. Moreover, the reciprocal map u-l
of u satisfies (lH 0 o Ai = A o u’1 and the transpose of u, tu : El :-~ E’ is linear,
continuous and bijective with (tu)"I - tu-1.

Set a = 03C103941(z1) E 03C103941(E’1E1) and z1 = j>1 y’j~yj, y’j E E’1, yj E E1, lim ~y’j~ ~yj~ = 0.

There exist, for j > 1 unique x’j E E’ and x j E E such that yJ = = x J o and

yj = u(x j ); moreover lim ~x’j~ ~xj~ = o. Therefore a = 03C103941(z1) = 03A303C103941(y’j ~ yj) =

= = 

j>1 j>1 j>1

= 0 xl) o = ~ x3} = po x? ~ xj . Hence a = E
j>1 j>1 j>1

where z = ~ x~ ~ xj; that is C Likewise,one has
j>1 

’

03C10394(E’E) C 03C103941(E’1E1).
Therefore = and R(A) = 0

Assume that E is a free Banach space i.e. E ~ c0(I, K) = C K / lim A; = 0).
In other words, there exist {e j ) j EI C E, ao, al E IR*+ such that any x E E can be written
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in the form x = 03A3 03BBjej, 03BBj ~ K and aosup al sup |03BBj|.For any continuous

linear form x’ E’ , one has 1 I  x’ e j > I  x’  I  x’ e j > . Let

e’j be the element of E’ defined by  >= Put Eo = E[(e’j)j~I], the closed
linear subspace of E’ spaned by Hence each x’ E Eo can be written in the unique
form x’ = E K, lim = 0. Moreover, if v E C E’®E, one has

v = ljl’l ~ ej, lj ~ K, lj = 0 and a° sup  ~03C5~ ~ «1 sup | lj|.

On the other hand, one has co(I,H) = C H/lim aj = 0}. For any

z E H0E one has z = 03A3aj ~ ej,aj E H with lim ~aj~ = 0 and 03B10 sup ~aj~ ~ ~z~ 
jEI 

J jEl

ai sup ~aj~. Hence, if (E, A) is a left Banach H-comodule, for 3- E, one has A(.r) =
j EI

In particular 0(et) = = 03A3alj ~ ej and =

jEI jEI jEI

= 03A3alk ~ 03A3akj ~ ej =
jEl kEl kEI jEl

= 03A3 03A3 at.k ® alj ~ e j . Thus one obtains

kEI jEI

(1) c(atj)= 03A3alk ~ akj ; l,j ~ I

kEI

Also, one has

(2) ; 

(3) I E I.

kEI kEI

Proposition 6 : : Ro(A) = 03C10394(E’0E) is a closed subcoalgebra of H. In other words

c(Ro(ð» C R0(0394)R0(0394)

Proof : Since (e~ 0 is a total family of and po is linear and

continuous, the family 0 is total in 03C10394(E’0E = R0(0394) = the closed
linear subspace of H spaned by the (1H 0 x’) o A(.r), x’ E Eo, x E E.

To see that C R0(0394)R0(0394), it suffices to show that for E I one has

e(po(eJ ® ee)) E However, by definition, 03C10394(e’j ~ el) = (1H
= alj E Ro(A). Then, one deduces from (1) that ® el)) = c(alj) = 03A3alj ® akj E

kEI
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R0(0394)R0(0394).

Note : If v = 03A3 lje’j ~ el E , one has 03C10394(03C5) = 03A3 ljalj and a E R0(0394) iff
1>,l t,j

there exist vn E E’®E such that a = lim 03C10394(03C5n).
n-+o

Remark 2 : : Let (E, 4) and 0~) be two isomorphic left Banach comodules that
are free Banach spaces. If u : E -+ E1 is a comodule isomorphism, , (ej)j~I a base of E
and (e j ) j EI the base of El defined by E J = u(e j ); then, with the above notations, , one has

Ra(o) = R0(03941).

Remark 3 : : If dimE = n  +~, one has R(0) - R0(0394) = pa(E’ ® E) and
dimR(0394)  n2

II - REPRESENTATIVE SUBALGEBRA

II - 1 Conjugate comodule of a finite dimensional comodule

Let (E, L1) be a ( Banach) left H -comodule of finite dimension and a h’-
n

base of E. As above, for any x E E, one has 0394(x) = 03A3Aj(x)~ej and A j (x ) = 
j=1

n

0394(x) = 03C10394(e’j ~ x); Aj = (1H~e’j)o0394 E ,C(E,H). In particular 03A3 a‘j where
. 

’ ’ 

J=l

alj = Aj(el) = and we have the relations (1) , (2) and (3) , with I = (l, n].
The relation (3) means here, that the matrix A = E Matn(H) is invertible
with inverse A-1 = 

Fix the base of E and define the linear map C1" : E’ --~ H ~ E’ by setting
n n

0394~ (e J ) = ~ ei, 1  j  n. Hence for x’ = 03A3 je’j E E’, one ~ 
~‘1 ~~1

n n n

£ ~ ej = 03A3 A~l(x’) ® e’l.

Lemma 1 : (E’, is a left H ..comodule.

Proof : One verifies that o o r~ = o; indeed, if a E H then c(a) _ ~ a~ ~ Hence,
’ 

~>i

one has = = 03C3(a)e and a = = It
c» t>~
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follows that = and o o = = 

t>i t2:1 t>~

03C3(03C3(a)e) = u( a).
n n

Since 03C3(alj) = 03B4lj, one has (o ® lE,) o 0394~(e’j) = 03A3 o o = 03A303C3(alj)e’j =

t=i i=i

= e- 1  j  n. It follows, by linearity, that (cr 01E’) o Ov = 1E’.
Let us remember that where r(a 0 b) = b ® a. Hence , we have

n n

co~(alj) = Therefore = =

k=1 l=1
n n n n

- I I ~(akj) ® ~(alj) ~ et - ® (1H ® Ov) ~(akj) ® ek _
~=1 t=l ~=1 :=!

and 

Corollary : : R(6 V) = ~(R(0394)).

Proof : Identifing E" with E, one has R(6 V) = Set z = 03A3 03BBljel ®

e’j E E 0 E’; hence = 03A3 03BBlj03C10394~ (el ~ e’j). However ~ e’j) = ( 1 H ®

et) o 0394~(e’j) = ~(alj) = ® ee))s therefore 03A3 03BBlj~(03C10394(e’j ® el)) =

where zi = 03A3 03BBlje’j ® el E E’ ® E. It follows that R(0394~) C ~(R(0394)). The

same formulae show that if a = 03C10394(z1) E R(0394), where zi = 03A3 03BBlje’j ~ et E E’ ~ E ,

one has ~(a) = 03C10394~ (z) where z = 03A3 03BBljel ~ e’j E E ® E’ , hence C R(0394~).

II- 2 Direct sum of Banach comodules

Let (E9)1~9m be a finite family of left Banach H-comodules with ~9 the coproduct of~ ~ 

m 
n 
m 

)!

Es. The direct sum E = equiped with any norm equivalent to the norm ~ -~ =
s=1 9;i

m m m

= max is a Banach space. Put A = ~ G19, i.e. A~Y~) = ~ L19(x9). It is
1sm 2014 ~~ ~ - - s=1 s=1 a=l

readily seen that (E, A) is a left Banach comodule. Moreover , if : E -~ E is the

projection of E onto then 1 H ~ ps is a projection of HE onto HEs and one has
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m

HHEE = ~ HEs. On the other hand pa is a comodule morphism i.e. (1H ~ ps) o A =
8= 1

A o ps; furthermore (1H ~ ps) o = 0 for s ~ t and .r t E Et.
m

Also, we have JE~ = ~ E~; the projections associated with this direct sum are the
9=1

1 ~  m.
m

Proposition 7 : : With the above notations, one has 03C10394(E’E) = 03A303C10394s(E’sEs)
~==1

m

and R(A) is the closure of ~ R(Da) in H.
a=I

Proof : If x9 E E~, xt E Et and s ~ t, then = = p.
__ 

m m m m

Set z = L E = one has z = £ £ It follows
j>1 twl j>1 s=1 t=1 ~ 

__ 

m m m m 

that = ~ ~ ~ x~,j) o =

j>1 J=1 t=1 
~ 

j>1 a=1 t=1 
~ 

m m m m

=

j>1 s=1 t=1 j>1 a=1 a=I j>1
m 

= 03A303C10394s(zs). If zJ E E’sEs C E’®E, 1  s  m, one has = po, (z9). Therefore,
8=1

m

on one hand, C 03A3 pa, (E’sEs), and on the other hand, po, (E’sEs) C
a==i

m

03C10394(E’E). Hence, one has 03C10394(EE) = 03A3 po, (E’Es). One verifies readily that R(0394)
m

is equal to the closure of V~ R{~a) in H.
s=1 

m

Corollary : : If dimEs  +~, 1  s  m, then one has R(0394) = 03A3 R(0394s) where
~==1

m m

s=1 s=1

Remark 3 : : If the comodules (EJ, ~a), 1  s  rra , are pairewise isomorphic, then for
m m

the comodule (E, A) where E = ® Ea, A = ~ 0$, one has R() = R(A~), 1  ~  m.

s=1 s=1
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II - 3 The representative subalgebra of H

Let S(H) be the set of all elements of the form a = ( 1 H ® x’) o of H where (E, L1 )
is a finite dimensional left H-comodule and x’ E E’, x E E. Let us put dimE = dim0394

Lemma 2 : : S(H) is a multiplicative, unitary submonoid of H.

Proof : Set a = (IH ~ x’) o and b = (IH ® y’) o 03941(y) E S(H) where (E, 0394) and
(E, ~1 ) are left H-comodules of finite dimension and x’ E E’, x E E, y’ E Ei, y E El.

p q P q

One has 0394(x) = 03A3aj®xj, 03941(y) = 03A3bt~yl and 0394E~E1(x~y) = 03A303A3ajbl~yl.
P q

Hence , ab = . , a?bt  x’, xj > y’, bl >=
j=i 1=1

(1H ® x’ ® y’) o ® y) E S(H).
Since c(e) = e ~ e, E = K.e is a left subcomodule of H of dimension 1, one has

e = (IH ® a’) o c(e) E S(H). a

Let R(H) be the linear subspace of H spaned by S(H). Then R(H) is an unitary
p q

subalgebra of H. Indeed, if a = 03A303BBjaj and b = 03A3 lbl are two elements of R(H),
j=1 ~==1

P q

since ajbt E S(H), one has ab = 03A303A303BBj lajbl ~ R(H). One says that R(H) is the
j=i l=1

representative subalgebra of H.

Note : Put, for the left H-comodule (E, A) of finite dimension , 5*(A) = {a =

(1H 0 x’) o E H; x’ E E, x E E}. As in Proposition 5, depends only of the

isomorphism class A of (E, A). Furthermore, one has S(H) = U S(A). 0

dim0394+~

Also, it is clear that the K-linear vector space R(A) = 03C10394(E’ 8 E) is spaned by

5*(A). Hence one has R(H) = U R(A). Moreover, if (Ei, ðI) and (E2, A2) are two
dim0394+~

comodules, then R(Ai = R(ð})+R(ð2) contains R(Ai) and R(A2) i.e. the family
ordered by inclusion is directed upward.

Theorem 1 : : The representative subalgebra R(H) of H is such that c(R(H)) C R(H) ®
R(H). . Moreover (R(H), m, c, ~, ~) is a Hopf algebra.

Proof : It follows from Proposition 6 and Remark 3 that if A is a coproduct of
finite dimension, then c(R(A)) C R(~) ~ R(A) : : that is R(A) is a coalgebra. Since
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R(H) = U R(0) is the union of coalgebras, it is a coalgebra. On the other hand,
dim0394+~

one deduces from the Corollary of Lemma 1 that C R(H). The Theorem 1 is
proved.

II - 4 Simple comodules of finite dimension

Let be a base of the finite dimensional left H-comodule ( E, 0). Let us

remember that A j = is a comodule morphism.One sees that n kerA j = (0)
1~j~n

and is free in ,C(E, H). Since Aj(ej) = ajj, one deduces from (2) or from
Corollary 2 of Proposition 3 that ej ~ kerAj and ker Aj ~ E.

Put Hj = Aj(E); then Hj is a left subcomodule of H of dimension  n. Furthermore,
n n

with previous notations, one has R(0394) = E) = L Hj and Hj = 03A3K . alj, also
j=1 ~-1

J?(A) is a subcoalgebra of dimension  n2. One can have dimR(A)  n2 for example, if
q 9

Eq = and 0394q = q ~ 2, one has = R(A) and dimR(0394q) = dimR(0394) ~
t= I t=~

n2  (Qn)2 = (dim(Eq))2.

Definition : : A left Banach H ..comodule E is called simple or topologically irreducible
if E is not the null space and does not contain any closed subcomodule different from (0)
and E.

Let H om.com( E, be the Banach space of the left Banach comodule morphisms of
(E, ~) into and End.com(E) = Hom.com(E, E), this later is a Banach algebra.

Remark 4 : Schur’s Lemma.
Let {E, 0) and {El, O1 ) be two simple, finite dimensional le f t H-comodules.

(i) If E and E~ are not isomorphic, one has Hom.com(E, E~) = (0)
(ii) In the alternative case, any non null comodule morphism of E into E~ is an isomor-
phism. In particular, End.com(E) is a (skew) field of finite dimension  (dimE)2. If K
as algebraically closed, then End.com(E) = K.lE.

Proposition 8 : : Let be a simple Banach le f t H-comodule of finite dimension
n. Let (ej)1~j~n be a base of E and Aj = (lH ® fj) o 0394, 1  j  n.

Then Hj = Aj(E) is a simple left H ..comodule of H of finite dimension n. Further-

more, there exists J C ~1, n~ such that R(~) _ ~ Hj ( a direct sum of comodules).
jEJ

Proof : It is the same as in semi-simple module theory. Indeed, since ker Aj ~ E and E
is a simple comodule of finite dimension n, the map Aj E ~ Hj = Aj(E) is a comodule
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isomorphism. Hence Hj is a simple comodule of dimension n with base (alj)1~l~n. If

1 ~ j, q  n, one has Hj n Hq = (0), or Hj = Hq. Changing the order if necessary, we
my assume that (H1, ... , Hm) is the family of the distinct comodules H j ; m  n . Hence

m

R(0394) = 03A3Hj, Hj ~ Hq for j ~ q.
j=1

Since H1 n H2 = (0) , one has the direct sum of comodules HH (B H2. Let jo be
the least integer > 3 such that H2) n Hjo = (0). Hence, one has the direct sum

H1 ~ H2 ® Hjo and for j  jo, one has (H1 ~ H2) n Hj ~ (0), therefore Hj C H1 ~ H2.
Hence , by induction, one obtains J = {1, 2, jQ, ... jk = m~ C [1, m] and the direct sum of
comodules ~ Hj such that for l ~ J, Hl ~ ~ Hj . It follows that R(A) = ~ Hj .

jEJ jEJ jEJ

Corollary : : Let (E, A) and (Ei, .ðl) be two simple left H-comodule3 of finite dimension
that are not isomorphic; then Ai) = ,a direct sum of comodule3.

Proof : With previous notations, put R() = Hj and R(Ai) = ~ Hl . Let

jEJ tEL

pj [resp. p~~ be the projection of R() [resp. onto Hj [resp. H~~ . Suppose that

R(A) n (0); this finite dimensional comodule must contain at least one simple
comodule V. There exists j E J [resp. e E L] such that pj(V) ~ (0) [resp. p1l(V) ~
(0)] ; therefore pj(V) = Hj [resp. p1l(V) = H1l]. Since V is simple, pj|V [resp. p1l|V] is

an isomorphism of V onto Hj [resp. H1l] . It follows that Hj and H1l are isomorphic.
Hence E and Ei are isomorphisc ; a contradiction. Therefore R(ð) n R(~1) _ (0) and
R(A ® Ai) = e R( ð.1).

Remark 5 : : Notations and hypothesis as above. If Kis algebraically closed, then the

H ~,1  j  n, are pairewise distinct.

Proof : Indeed, if Hj = J?g for j ~ q, then u = AjoA-1q is an automorphism of the finite
dimensional simple comodule Hj . By Schur’s lemma, one has u = A . 1Hj, 03BB E k, 03BB ~ 0.
Hence Aj = 03BBAq and ajj = Aj(ej) = 03BBAq(ej) = 03BBajq. Therefore 03C3(ajj) = 1 = 03BB03C3(ajq) =
03BB03B4jq = 0 ; a contradiction. Cl

Let H’ be the Banach space dual of H ; if we set for a’, b’ E H’, a’ * b’ = ( a’ ® b’ ) o c, then
H’ becomes a complete normed algebra with unit r. If (E, A) is a left Banach comodule,
setting for a’ E H’ , and x E E, a’ . x = (a’ ~ lE) o A(.r), one induces on E a complete
normed right H’-module structure. Moreover, if H is a pseudo-reflexive Banach space, then
any closed right H’-submodule of E is a Banach left H-subcomodule of E and reciprocally
(cf. [3]).
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Let (E’, 0~) be the conjugate of the finite dimensional left H-comodule (E, L1 ). One
has for any a’ E H’, x’ E E’ and x E E,  a’ >= x’, ~ x >. Therefore, if M
is a H’-submodule of E, then M1= ~x’ E E’/  x’,x >= 0, x E M} is a H’-submodule
of E’. Reciprocally, if r~ is bijective and if M’ is H’-subcomodule of E’, then M’1 is a
H’-submodule of E.

Proposition 9 : : Let H be a complete ultrametric Hopf algebra that is a pseudo-reflexive
Banach space such that r~ is bijective.

Then, a finite dimensional left H -comodule (E, t1) is simple if and only if (E’, ~~) is
simple .

Proof : Indeed, suppose that (E, a) is simple ; if M’ is a left H-subcomodule of

(E’, ~") then M’1 is a left H-subcomodule of E ; ; therefore M’1 = (0) or M’1 and
M’ = E’ or M’ = (0). By the same way, one shows the reciprocal.

II - 5 When H admits a left integral

II - 5 - 1 Again some general facts

Lemma 3 : : Let (E, ~) be a finite dimensional left H -comodule and let ~~ be the
restriction of c to R(L1) = 03C10394(E’ ® E); then = R(0394).

n

Proof : Let be a base of E. One has = ® ej, 1  .~  n and
~ 

j=1

spans R(0394). Since E R(ll)’, one has, according to (I) , alj =
= = 03C10394c(03C3~alj) E and C Reciprocally., if a’ E R(0394)’~ 

n

and a = 03A3 03BBljalj E R(0), one has ® a’) o £ 03A303BBlj  a’,akj >

k=1

alk E and C R(0394).

Lemma 4 : : Any finite dimensional left H-subcomodule E of H is contained in the
representative subalgebra R{H) of H .

n

Proof : If is a base of E C H, one has c(ej) = 03A3 alj ~ ee. Let cE be the
~ 

t=1

restriction of c to E, then R{cE) is spaned by Since ej = (1H ~ ~) o c(ej) _
n

= 03A3 03C3(el)ajl E R(cE), one has E C R(cE) C R(H).
~=i
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Note : If K and H are discrete, one deduces from the above result and from Theorem
1- (ii) - of [3] that R(H) = H.

II - 5 - 2 Under the hypothesis : H admits a left integral

Let S~ be the family of the isomorphic classes of the simple, finite dimensional left
H-comodules ; S~ is not empty : its contains the class of the left subcomodule K.e of H.

If w is the class of (E, A) , we set R(w) = R(A) that is independant of (E, A). It

is readily seen that Rs(H) = 03A3 R(w) is a subcoalgebra of R(H). Moreover Rs(H) =

ED R(w), a direct sum of coalgebras. Indeed for any finite subset (wl, ... , wm) of 0, one
wEft

n m

has L ~~ R(wt) : see Corollary of Propositions 8 and its proof. Furthermore, if
t=1 t=i

r~ is bijective, then is a sub-Hopf-algebra of R(H). 0

By definition, a left integral for the complete Hopf algebra H is an element v of H’
such that  * 03BD = , e > v for all  E H’. The complete Hopf algebra H is called supple
if H is a pseudo-reflexive Banach space and ~ o ~ = 1H. For H, a supple complete Hopf
algebra that admits a left integral v such that  v, e >= 1, we know that any simple left
Banach H.comodule is finite dimensional ( Theorem 3 - [3]) .

Theorem 2 : : Let H a supple complete Hop! algebra that admits a left integral v such
that  v, e >= 1. Then

(i) R(H) = ~ R(03C9) where 03A9 M the family of the isomorphic classes of simple Banach.
wES~

le f t H ..comodules.

(ii) The Hopf algebra R(H) is dense in H, that is H = ?Z(H) = ~R(03C9).

Proof :

(i) One deduces from [2] - Theorem 3 that any finite dimensional H-comodule (E, A)
is semi-simple i.e. (E, 0) = ~ ~(Vt,, 0394t,) with Vt, E wr and wr E Q. Hence

r t 

~ ~ 

R(A) = 03A3R(03C9) = ~ R(03C9) ~ Rs(H). It follows that R(H) _
r t 

~ 

r r

= ~ R(w).
~Ei~

(ii) The Hopf algebra H is naturally a Banach left H-comodule with coproduct c. Let
a E H, a ~ 0; since H is pseudo-reflexive, the Banach left subcomodule E(a) = H’ a of
H contains a and is a non null Banach space of countable type ( cf. [3] ).
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With the hypothesis, we know that E(a) contains simple left H-subcomodules (finite
dimensional) (cf. [3] ).

Let (Vr )rET be the family of all simple subcomodules of E(a). Put W = ~ Vr, there
rET

exists S ~ T such that W = ® Vr; one has c(W ) C H ® W . Since c is a homeomorphism
r~s

of H onto c(H), setting Eo = W, one has c(Eo) C HE0, i.e. Eo is a Banach left
subcomodule of E(a). In fact Eo = E(a). Otherwise, one has a direct sum of Banach
comodules E(a) = Eo ~ Ei with E1 ~ (0) (cf. [2]). However Ei must contain at least
one simple comodule V and by definition of W, one has V C W. Hence Eo n E1 ~ (0); a
contradiction.

Let wr be the isomorphic class of the simple comodule Vr, T E T. By Lemma 4,
VT C E T. Hence, we have W = ~ Vr C C = 7~(F). It

rET rET 03C9~03A9

follows that a E E(a) = Eo = W C n(H). We have proved that H = R(H) = ~R(03C9).
WE~

Note : The above results are abstract version of some results of representation theory of
groups. In particular Theorem 2 is Peter-Weyl Theorem (cf. [3]).
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