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ON THE GENERATING FUNCTIONAL OF A CONVOLUTION SEMIGROUP

ON A HILBERT-LIE GROUP

by Erdal Co015Fkun and Herbert Heyer

Abstract (English)

The authors establish a Lévy-Khintchine type representation for

the generating functional of a continuous convolution semigroup of

probability measures on a Hilbert-Lie group. The proof is inspired

by the one given in the case of a locally compact group the additional

technical problem to be handled being the construction of modified
canonical coordinates within an appropriate space of twice differen-

tiable functions on the group.

Abstract (French)

On établit une formule de représentation de type Lévy-Khinchine

pour la fonctionnelle génératrice d’un semi-groupe continu de con-

volution des mesures de probabilité sur un groupe de Lie-Hilbert.
La démonstration est stimulée par cette du cas d’un groupe localement

compact le problème à résoudre étant la construction des coordonnées

canoniques modifiées audedans un propre espace des fonctions deux fois

différentiables sur le groupe.
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1. Preliminaries .

For any topological group G whose topology admits a complete left

invariant metric d we.denote the Banach space of bounded left d-

uniformly continuous real-valued functions on G by Cu(G). Given any
real-valued function f on G and aeG the functions and

a f :=L a f are defined for all beG by and

af(b) :=f(ab) respectively. In order to do measure theory on G we

consider the Banach algebra M(G) of real-valued measures on the
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Borel 03C3-field B(G) of G, M(G) being furnished with total variation
and convolution. The symbols M (G) and M1(G) stand for the semi-

groups of positive measures and of probability measures on G re-

spectively.

In what follows G will always be a Hilbert-Lie group modelled
over a separable Hilbert space H. Interesting examples of Hilbert-
Lie groups are

1.1 the Sobolev groups Hk(M,G) introduced for a connected Riemannian

manifold M and a finite dimensional compact Lie group G such

that k> 1 2 dim M, and 
1.2 the Kosyak groups GL2(03B1) for 03B1 : = (akn)(IR +)ZZ2 such that there

constant c>o satisfying a whenever k,n,m~ ZZ.

(See Cl] and [4] respectively)

The tangent space T of G which is isomorphic to H serves as the
domain of the exponential mapping Exp into G. Exp is an analytic

homeomorphism from a neighborhood N of onto a neighborhood
U of e~G. The inverse of Exp considered as a mapping from U onto
N will be denoted by Log. Given an orthonormal basis {Xi:i~ IN}
of H one definies a system {ai:i~ IN} of canonical coordinates

ai:Ue ~ IR such that 
_ 

a = Exp( E a_ (a)X_)
i~l 

~- ~ 

for all a~Ue. In fact, for each, i~IN we put ai(a):=Log(a),Xi>
whenever a~Ue.

Given X6H a function f~Cu(G) is called left differentiable at

a6G with respect to X if

Xf(a) := lim 1 t(f(Exp(tX)a)-f(a))

t-~o

exists.f is called continuously left differentiable if Xf(a) exists for

all X~H, aG and if a ~Xf(a) as well as X ~Xf(a) are continuous

. mappings. Derivatives of higher order are defined inductively. NOW,
let f6C (G) be a twice continuously left differentiable function.
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For each aeG the mappings Df(a):X ~--> Xf(a) and D2f(a):
(X,Y) ~--> XYf(a) are continuous linear and symmetric continuous

bilinear functionals on H and H x H respectively. One has the

equalities Df(a),X>=Xf(a) as well as D2f(a) (X),Y>=XYf(a) whenever
aEG and X,Y~H. Now the set C2(G) of all twice continuously left

differentiable functions fec (G) such that the mapping a ~ D2f(a)
is d-uniformly continuous, ) ||Df||:=supa~G ||Df(a)||  ~ and Ho f||:

=supa~G ||D2f(a)||  ~ turns out to be a Banach space with respect to
the norm

f ;r--> ||f||2 = ||f||+||Df||+||D2f||.

We note that each fec2(G) has a Taylor expansion of second order

at eeG given by

f(a)=f(e)+03A3i~1ai(x)Xif(e)+ 1 2 03A3i,j~1ai(a)aj(a)XiXjf(a)

for all a6U and some a~Ue.

The next aim of our discussion is a two-stage modification of the

given canonical coordinate system {ai:i~IN}. It is not difficult to

achieve an extension of {ai:i~IN} to a canonical coordinate system

{bi:i~ IN} in C2(G). For the second modification which has been the
main work in [2] we start with a motivation valid for commutative G

over H. Given a complete orthonormal system {Xi:i~ IN} of H and nSIN

we introduce Hn:={X1,...,Xn}>. Then H/Hn and Hn are isomorphic

spaces, G n :=Exp H is a closed subgroup of G and G/Gn is a finite
dimensional Hilbert-Lie group. If 

. 

p n denotes the canonical projec-

tion from G onto G/G n and {b~:i=l,...,n} a canonical coordinate

. system with respect to lk I ,...,X ) n (in then the functions

d9:=b9 o p have the properties that Xjdni exists and = o
for all j>n, i=l,...,n. It is therefore reasonable to introduce

for any Hilbert-Lie group G over H, any orthonormal basis

{Xi:i~ IN} of H and every neIN the space of functions

f~C2(G) satisfying the equalities Xif=o for all i>n and XiXjf=o
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for all i>n or j>n. The desired function space appears to be

c (2) (G) := U ne INC(2) ,n (G) . °

Clearly, if Gist commutative,

C ( 2 ~ r n (G) = ~ f o 
for each n~ IN, and C(2)(G) coincides with its right counterpart

C (2} (G) where differentiability is considered from the right rather

than from the left.

In order to obtain a modification of the given canonical coor-

dinate system {bi:i~ IN} in C2(G) to a modified one {di:i~IN} in

C (2) (G) we proceed as follows: For each n~ IN let {bni:i=1,...,n}
be a canonical coordinate system in CZ(G) (with respect to

{ X1,...,Xn}). Then, if bni~C(2) (G) for all i=1,...,n and n~no
for some no~ IN then the system {di:i~ IN} given by

di ’" 1 b.° for all i=1,2,...,no
. ;_ { bnn for all n>no

lies ° is called a modified canonical coordinate

system with respect to the basis of H.

Obviously every commutative Hilbert-Lie group and every finite

dimensional Lie group admit modified canonical coordinate systems.

In the finite dimensional case no equals the dimension of 
the group.

For Hilbert-Lie groups G admitting a modified canonical coordinate

system one defines Hunt functions 03C6n by 

03C6n(a) 1 := 03A3ni=1di(a)2
for all a6G. Clearly, 03C6n(a)>o for all 
hence (e)=o and XiXj03C6n(e)=203B4ij whenever i,j=l,....n (n~ IN).

(cf. C 31 , Lemma 4 .1. 9 and 4.1.10).
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2. The domain of the generating functional

For any measure (G) one introduces the translation operator

T of  on C u (G) by

Tf := 

for all 

2.1 Properties of the translation operator

2.1.1 Cu (G)
2.1.2 T *03BD=T T03BD if also veMl(G)
2.1. 3 C CZ (G) , hence

2.1.4 (G) ~. C ( 2 ) (G) . °

A (continuous) convolution semigroup on G is a family in

M (G) such for all and limt~o t=: o=~e the

limit being taken in the weak topology in M1(G).
2.2 Proposition. Any convolution semigroup in M1(G)
admits a Levy measure r1 on G defined as a 03C3-finite measure in M+ (G)
satisfying the properties r1(~e~)=o and

lim L ffdn

valid for all fec u (G) with e~ supp(f).
For a proof see [6].

2.3 Corollary. For every neighborhood U of e

supt>o 1 t t( U) ~
Let be a convolution semigroup on G and (T :tEaR+~

the corresponding contraction semigroup on Cu(G) with (infini-

tesimal) generator (N, D (N) ) . The generating functional, (A, D (A) ) of

is given by
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for all f in the domain D (A) of A. Plainly Af=Nf(e) whenever f6D(N).

From now on we assume G to be a Hilbert-Lie group (over a sepa-

rable Hilbert space H) admitting a system of modified

canonical coordinates (with respect to an orthonormal system

{Xi:i~ IN} of H). Moreover, let be a convolution semigroup
on G.

2.4 Proposition. For every n~ IN

sup 
t~ IR + 1 t ~.

Proof. As a consequence of the Banach-Steinhaus theorem together
with the Hille-Yoshida theory (cf C3a , Lemma 4.l.ll) we obtain

that for every (2),n(G) and every e> o there exists a g:=g~

EC (2) ~n (G) ~ D (N) such f (e)=g (e) , 
and for all Applying this state-

ment n (G) we obtain the existence of 03C8 n~C(2), n (G) n D (N)

satisfying ( ~ ~n-~’n~ ~ 2~°°~ ’~ n(e)=~n(e)=o~ , , and

(e)=26.. for all i, j=1, ... , n. But the Taylor expan-
sion of 03C8n implies the existence of a constant 03B4n>o and a neigh-
borhod W of e such that

_ 

valid for all a~W. Then

sup 

t~ IR + 1 t W 03C6nd t ~,

and, since 03C6n is bounded, Corollary 2.3 yields the assertion. __J
2 . 5 Theorem. ° C ~ 2 ~ (G) 
Proof . Let and put

g (a) 

for all a~G, where the functions zi are chosen in C(2) , n (G) n D(N)



57

such that and Xjzi(e)=Xjdi(e)=03B4ij for all i,j=1,...,n
(See the proof of Proposition 2.4). Then with g(e)=o

and X.g(e)=o. From an application of the Taylor expansion 
of G in

a neighborhood W of e we obtain a constant k1~ IR + such that tg(a)) (
(a) for all a~W. Now Proposition 2.4 implies that

supt~ IR +|1 t W gd t|.~.

Since g is bounded. Corollary 2.3 provides a constant k2~IR + inde-

pendent of t such that

! ~ 
for all t~ IR +. Adding these two inequalities yields a constant

independent of t such that

~ ~ f(e)-f(e))- 
for all t~ IR +. Since z.6D(N) and there is a constant ,

k(n)~ IR + depending only on n such that

) ~(T~ f(e)-f(e)))~k(n) 
’

for all t6m~. This inequality holds for all ~C~~(G). . From the

Banach-Steinhaus theorem we finally conclude that Af exists for

all (G) . _)
2.6 Corollary. . For every n~ IN the measures are bounded.

proof. Let (~k>i-~ ~ sequence of functions in C~(G) satisfying

and fk~1G  for k2014 (where G":=GB{e}). Then.

since e~supp(fk03C6n),

"~~n~ = ~n~ ’

and by the theorem A(f~)SA(f~~...~A(l ~&~)«’(k~l). ° The
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monotone convergence theorem yields the assertion. ~~
3. The representation of the generating functional

G remains to be a given Hilbert-Lie group over a separable
Hilbert space H. We assume the existence of a system {di:i~ IN} of
modified canonical coordinates in C(Z),n(G). For every 
we define functions Dnf on G by

( f (a) - f (e) -En d. ia) X. f (e) - 1 03A3ni,j=1 d. (a) d . (a) X. X . f (e))03C6n (e)

~f~~~ ~~ ~ 
o otherwise. 

if 

’

They are measurable, continuous at e, and bounded in a neighborhood
of e. In fact, the Taylor expansion of f at e yields

f (a)=f (e)+En d. (a)Xif (e)+ 1 2 03A3ni,j=1 d. (a)d. (a)XiXjf (e)+03C6n (a)8 (f,a)

for all a in a neighborhood W of e, where 9 (f,.) satisfies

Thus

r- 
- 

e (f,a) if a~WB[03C6n=o]

Dnf(a)= {
‘ o if ae [ 03C6 n=o]

for all a6W and lim hence supa~W|Dnf(a)|~. The meas-

urability of Dnf is clear.
Also note that there exist a neighborhood V of e with Vc W and

a function 03B6~Cu(G) with o~03B6~1, 03B6(V)={1} and 03B6( W)B{o}. The func-

tions B~:=D~ are also measurable, continuous at e and bounded with
and they satisfy

Bn = (f-f (e) _ En_ diXi f ie) _ 
1 En ._ didjXiXjf (e) 03C6n

- 1



59

We are returning to the discussion of a convolution semigroup
on G with associated Levy measure 

3 .1 Proposition. For every fEC ( 2 ) (G) the integral

j 1 E, 
G 

i=1 i i 2 i, ~ =1 ~ 

exists.

Proof. Let fEC(2)rn(G) for some n~ IN. By Corollary 2.6 together

with the properties of Bf we obtain thatn

I Bn d(03C6n .n) ~.
G ‘C~ ~~ 

f n

n

Now, let V be a neighborhood of e chosen as in the definition of

Bfn. Without loss of generality we assume that r1 (a V) =o. Then

I X (f-f (e)-En En 

= j gn d(03C6n ,n) 

n

Applying Corollary 2.3 we also obtain that

j ( f - f (e)-En d.X, f (e)-- 1 (e) )dn~, I
~V, i=1 i i 2 i,~=1 a. 

hence that the integral in question exists. ~’
3.2 Proposition. Let n~ IN. Then

(i) for fEC(2) ,n(G) the integral V B[03C6 n=o J fd~ 
is 

_

bounded provided is bounded on VB[03C6 =o]..
n n

(ii) For every bounded measurable function f on G which is

continuous at e, (~n.n)-a.e. continuous and satisfies f(e)=o,
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Proof. (i) follows from

/ 
v 

!f!dn = / 

n n

= /h~ d(~~.n)~,

since hnf:=1VB[03C6n=o]f03C6
n 

is lower semicontinuous and bounded on G.

(ii) By Corollary 2.6 the measure is bounded on G . On the

other hand we infer from Theorem 2.5 that for the measures B)~:
theinequalities ’

A(03C6n)~03BDn(G )
hold. It follows that If f is a bounded

measurable function on G which is 03BDn-a.e. continuous and satisfies

e~supp(f) then clearly

limt~ofd03BDtn = fd03BDn.

A slightly more sophisticated argument yields the validity of this

limit relationship also for bounded measurable functions f that are

03BDn-a.e. continuous, continuous at e and satisfy f(e)=o. )

3 - 3 Corollary. For every n6IN

= G Bnf 03C6nd~.

The proof follows from the discussion preceding Proposition 3.1

together with (ii) of the Proposition. )
3.4 Theorem. Let G be a Hilbert-Lie group over a separable Hilbert

space H. We assume that there exists a modified canonical coor-

dinate system {di:i~ IN} with respect to an orthonormal basis {Xi:
i~ IN} of H. On G we are given a convolution semigroup { t:t~ IR+}
with Levy measure n and generating functional A.
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Then there exist a vector r= (r . ) . i iE IN in IR 
IN 

and a symmetric. ..

positive-semidefinite matrix 03B1=(03B1ij)i,j~IN~ IM (IN, IR) such that

for all fEC ( 2 ) (G) one has 
.

Af = 03A3i~1riXif(e) + 

+f G X ( f-f (e) - 03A3i~1diXif(e))d~.

Proof. Let f~C(2) (G) , hence for some n~ IN. Then by
Corollary 2.6 together with the discussion preceding Proposition
3.1 we obtain that for the function ~n the integral

~ 
G 
xgdn _ l 

G 

exists. From Corollary 3.3 we infer that

G gd~ = limt~o 1 t Ggd t.
Now let V be a neighborhood of e chosen as in the definition of

Bn. Since for all i,j=1,...,n the functions are boundedf i J n

and continuous on V 
x 

:=VB~e~ the integrals 
.

j 7 d!1 = j V1 [ 03C6 
n 
= al didj03C6 n 1 d ( n .n)

exist, as follows from (i) of Proposition 3.2. Moreover we have

g - f-f (e) - En d.X. f (e) - 1 03A3ni,j=1 didjXiXjf (e)i=1. i i 2 i, ~=1 i 7 ~i J

on V, hence

limt~o t 1 l V gdyt

- I 
X (f-f (e)-03A3ni=1 d.X. f (e))d~-1 2 03A3ni,j=1V didjXiXjf (e)dn.

V 
i=1 i i 2 a., 7-1 V i 7 i 7

Consequently,
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d V gd~ xgdn 
.

" ? Vdidjd t)XiXjf(e).

On the other hand, since n(3V)=o, we obtain that

j ( f- f (e) - En diXi f (e) - 1 03A3ni,j=1 d.d.X.X.f(e) )dn

= limt~o 1 t V(f-f(e))d t
- limt~o 1 t V(03A3ni=1diXif(e) - 03A3ni,j=1didjXiXjf(e))d t

which altogether implies that

Af = En A(di )X. f (e) + 1 En .- A(d.d.)X.X.f (e)

+ 

Defining r9:=A (d.) and

an. :_ -2(A(d.d.) -G didjdn)
for i,j=1,...,n we then arrive at the representation

Af = 03A3ni=1rniXif(e) + 03A3ni,j=103B1nijXiXjf(e)

+ 03A3ni=1Xif (e) ) d~.

As in the proof of Theorem 4.2.4 in E3] one shows that the matrix

an:= (an . ) i] i, .. ]=1, ... , n E IM (n, I~t) is symmetric and positive-semi-
definite. Moreover, from the definition of the system {di:i~ IN}
of modified canonical coordinates we conclude that and

03B1nij=03B1n+1ij for all i,j==l,...,n and neIN. ° Since fec(2) (G) was chosen

arbitrarily, there exist a vector (ri)i~ IN~ IRIN and a symmetric
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positive-semidefinite matrix such that

ri=rni and a ..=a9. for all i, j=1, ... , n, nE IN. The proof is com-

plete. 

3.5 Remark. If G is commutative one can show that the space C (2) (G)
which in this case coincides with its right counterpart C (2) (G) is

contained in the domain D (N) of the generator N of the given con-
volution semigroup on G, and a representation of N

analoguous to that of A is available. As for finite dimensional
Lie groups also for Hilbert-Lie groups G Gaussian semigroups can
be defined and characterized by the locality of their generators.
(cf. C3~ ,~ 6.2).

3.6 Remark. In the special case that G itself is a separable Hilbert

space H the representation of the generator N of a convolution semi-

group on H has been established previously in C 5] and C7 J.

In fact, in [5] the space (H) of all twice Frechet differen-

tiable functions feCu(H) such that 

(x)|| ~ and f " is uniformly continuous has ,

been introduced, and it has been shown that (H) C D(N). Note that

C (2) (H), and that our result yields the representation
of C5] at least for functions in C ( 2 ) ( H) .
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