Annales mathématiques Blaise Pascal

P.N. NATARAJAN

Some Steinhaus type theorems over valued fields

Annales mathématiques Blaise Pascal, tome 3, no 2 (1996), p. 183-188
http://www.numdam.org/item?id=AMBP_1996__3_2_183_0
© Annales mathématiques Blaise Pascal, 1996, tous droits réservés.
L'accès aux archives de la revue «Annales mathématiques Blaise Pascal » (http:// math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m b a m}^{\prime}$

SOME STEINHAUS TYPE THEOREMS OVER VALUED FIELDS

par P.N. NATARAJAN

1. Preliminaries:

In this paper K denotes R (the field of real numbers) or C (the field of complex numbers) or a complete, non-trivially valued, non-archimedean field as will be explicitly stated depending on the context.

In the sequel, infinite matrices $A=\left(a_{n k}\right), n, k=1,2, \ldots$ and sequences $x=\left\{x_{k}\right\}$, $k=1,2, \ldots$ have their entries in K. If X, Y are two classes of sequences, we write (X, Y) to denote the class of all infinite matrices $A=\left(a_{n k}\right), n, k=1,2, \ldots$ for which

$$
\begin{aligned}
A x & =\left\{(A x)_{n}\right\} \in Y \text { whenever } x=\left\{x_{k}\right\} \in X \\
\text { where }(A x)_{n} & =\sum_{k=1}^{\infty} a_{n k} x_{k}, n=1,2, \ldots
\end{aligned}
$$

it being assumed that the series on the right converge. The sequence $A x=\left\{(A x)_{n}\right\}$ is called the A-transform of $x=\left\{x_{k}\right\}$. The sequence spaces $\ell_{p}, p \geq 1, \ell_{\infty}, c, c_{0}$ are defined as usual i.e.,

$$
\begin{aligned}
\ell_{p} & =\left\{x=\left\{x_{k}\right\}: \sum_{k=1}^{\infty}\left|x_{k}\right|^{p}<\infty\right\}, p \geq 1 ; \\
\ell_{\infty} & =\left\{x=\left\{x_{k}\right\}: \sup _{k \geq 1}\left|x^{k}\right|<\infty\right\} ; \\
c & =\left\{x=\left\{x_{k}\right\}: \lim _{k \rightarrow \infty} x_{k}=s \quad \text { for some } \quad s \in K\right\} ; \\
c_{0} & =\left\{x=\left\{x_{k}\right\}: \lim _{k \rightarrow \infty} x_{k}=0\right\} .
\end{aligned}
$$

Note that $\ell_{p} \subset c_{0} \subset c \subset \ell_{\infty}$ where $p \geq 1$. For convenience we write $\ell_{1}=\ell .\left(\ell, c ; P^{\prime}\right)$ denotes the class of all infinite matrices $A \in(\ell, c)$ such that $\lim _{n \rightarrow \infty}(A x)_{n}=\sum_{k=1}^{\infty} x_{k}$ whenever $x=\left\{x_{k}\right\} \in \ell$.

2. The case $K=R$ or C

When $K=R$ or C, it is known ([11]), p. 4, 17) that $A=\left(a_{n k}\right) \in(\ell, c)$ if and only if
(1) $\sup _{n, k}\left|a_{n k}\right|<\infty ;$
and
(2) $\lim _{n \rightarrow \infty} a_{n k}=\delta_{k}$ exists, $k=1,2, \ldots$.

We now prove the following

THEOREM 2.1 :

When $K=R$ or $C, A \in\left(\ell, c ; P^{\prime}\right)$ if and only if (1) holds and (2) holds with
(3) $\delta_{k}=1, k=1,2, \ldots$.

Proof.

Let $A \in\left(\ell, c ; P^{\prime}\right)$. Let e_{k} be the sequence in which 1 occurs in the $k^{t h}$ place and 0 elsewhere, $k=1,2, \ldots$ i.e.,

$$
e_{k}=\left\{x_{i}^{(k)}\right\}_{i=1}^{\infty}
$$

where

$$
\begin{aligned}
x_{i}^{(k)} & =1, \text { if } \mathrm{i}=\mathrm{k} \\
& =0, \text { otherwise. }
\end{aligned}
$$

Then $e_{k} \in \ell, k=1,2, \ldots, \sum_{i=1}^{\infty} x_{i}^{(k)}=1$ and $\left(A e_{k}\right)_{n}=a_{n k}$ so that $\lim _{n \rightarrow \infty} a_{n k}=1$, i.e., $\delta_{k}=1, k=1,2, \ldots$ Thus (1) and (3) are necessary for $A \in\left(\ell, c ; P^{\prime}\right)$.
Conversely, let (1) and (3) hold. Let $x=\left\{x_{k}\right\} \in \ell$. In view of (1), $\sum_{k=1}^{\infty} a_{n k} x_{k}$ converges, $n=1,2, \ldots$ Now,

$$
\begin{aligned}
(A x)_{n} & =\sum_{k=1}^{\infty} a_{n k} x_{k} \\
& =\sum_{k=1}^{\infty}\left(a_{n k}-1\right) x_{k}+\sum_{k=1}^{\infty} x_{k},
\end{aligned}
$$

this being true since $\sum_{k=1}^{\infty} a_{n k} x_{k}$ and $\sum_{k=1}^{\infty} x_{k}$ both converge.

Since $\sum_{k=1}^{\infty}\left|x_{k}\right|<\infty$, given $\varepsilon>0$, there exists a positive integer N such that
(4) $\sum_{k=N+1}^{\infty}\left|x_{k}\right|<\frac{\varepsilon}{2 A}$,
where $A=\sup _{n, k}\left|a_{n k}-1\right|$. Since $\lim _{n \rightarrow \infty} a_{n k}=1, k=1,2, \ldots, N$, we can choose a positive integer $N^{\prime}>N$ such that
(5) $\left|a_{n k}-1\right|<\frac{\varepsilon}{2 N M}, \quad n \geq N^{\prime}, k=1,2, \ldots, N$, where $M>0$ is such that $\left|x_{k}\right| \leq M, k=1,2, \ldots$. Now, for $n \geq N^{\prime}$,

$$
\begin{aligned}
\left|\sum_{k=1}^{\infty}\left(a_{n k}-1\right) x_{k}\right| & \leq \sum_{k=1}^{N}\left|a_{n k}-1\right|\left|x_{k}\right|+\sum_{k=N+1}^{\infty}\left|a_{n k}-1\right|\left|x_{k}\right| \\
& <N \cdot \frac{\varepsilon}{2 N M} \cdot M+A \cdot \frac{\varepsilon}{2 A}, \text { in view of (4) and (5) } \\
& =\varepsilon,
\end{aligned}
$$

so that $\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty}\left(a_{n k}-1\right) x_{k}=0$. Thus $\lim _{n \rightarrow \infty}(A x)_{n}=\sum_{k=1}^{\infty} x_{k}$.
Consequently $A \in\left(\ell, c ; P^{\prime}\right)$ which completes the proof of the theorem.

When $K=R$ or C, the Steinhaus theorem ([4], p. 187, Theorem 14) can be written conveniently in the form $(c, c ; P) \cap\left(\ell_{\infty}, c\right)=\emptyset$, where $(c, c ; P)$ denotes the class of all infinite matrices $A \in(c, c)$ such that $\lim _{n \rightarrow \infty}(A x)_{n}=\lim _{k \rightarrow \infty} x_{k}$.

We shall call such type of theorems as "Steinhaus type theorems". Such theorems were considered in [2], [3], [8]. Using Theorem 1, we shall deduce one such theorem.

THEOREM 2.2 :

$$
\left(\ell, c ; P^{\prime}\right) \cap\left(\ell_{p}, c\right)=\emptyset \text { whenever } p>1
$$

Proof. :

Suppose $A=\left(a_{n k}\right) \in\left(\ell, c ; P^{\prime}\right) \cap\left(\ell_{p}, c\right)$ where $p>1$. It is known ([11], p. 4, 16) that $A \in\left(\ell_{p}, c\right)$ whenever $p>1$, if and only if (2) holds and
(6) $\sup _{n} \sum_{k=1}^{\infty}\left|a_{n k}\right|^{q}<\infty$,
where $\frac{1}{p}+\frac{1}{q}=1$. It now follows that $\sum_{k=1}^{\infty}\left|\delta_{k}\right|^{q}<\infty$, which contradicts the fact that
$\delta_{k}=1, k=1,2, \ldots$, since $A \in\left(\ell, c ; P^{\prime}\right)$ and consequently $\sum_{k=1}^{\infty}\left|\delta_{k}\right|^{q}$ diverges. This establishes our claim.

Remark 2.3.

Since $\left(\ell_{\infty}, c\right) \subset(c, c) \subset\left(c_{0}, c\right) \subset\left(\ell_{p}, c\right)$ where $p>1$, we have $\left(\ell, c ; P^{\prime}\right) \cap(X, c)=\emptyset$, when $X=\ell_{\infty}, c, c_{0}, \ell_{p}$ where $p>1$.

3. The case when K is a complete, non-trivially valued, non-archimedean field.

For concepts and results in Analysis over complete, non-trivially valued, nonarchimedean fields, we refer to [1]. In this case, Steinhaus type theorems were considered in [6], [7], [8], [10].

When K is a complete, non-trivially valued, non-archimedean field, one can prove that Theorem 2.1 continues to hold. In this case, if $A=\left(a_{n k}\right) \in\left(\ell, c ; P^{\prime}\right) \cap\left(\ell_{\infty}, c\right)$, then $\lim _{n \rightarrow \infty} \sup _{k \geq 1}\left|a_{n k}-1\right|=0$ (see [6], Theorem 2). So for any $\varepsilon, 0<\varepsilon<1$, there exists a positive integer N such that
$\left|a_{n k}-1\right|<\varepsilon, n \geq N, k=1,2, \ldots$.
In particular, $\left|a_{N k}-1\right|<\varepsilon, k=1,2, \ldots$.
Thus $\lim _{k \rightarrow \infty}\left|a_{N k}-1\right| \leq \varepsilon$ i.e. , $|0-1| \leq \varepsilon$ (since $A \in\left(\ell_{\infty}, c\right), \lim _{k \rightarrow \infty} a_{n k}=0, n=1,2, \ldots$, by Theorem 2 of [6]) i.e. , $1, \leq \varepsilon$, a contradiction on the choice of ε. Consequently we have :

Theorem 3.1

When K is a complete, non-trivially valued, non-archimedean field, $\left(\ell, c ; P^{\prime}\right) \cap\left(\ell_{\infty}, c\right)=\emptyset$.

Remark 3.2 :

However, $\left(\ell, c ; P^{\prime}\right) \cap(c, c) \neq \emptyset$ when K is a complete, non-trivially valued, nonarchimedean field, as the following example illustrates.
Consider the infinite matrix

$$
A=\left(a_{n k}\right)=\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
1 & -1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & -2 & 0 & 0 & 0 & \cdots \\
1 & 1 & 1 & -3 & 0 & 0 & \cdots \\
1 & 1 & 1 & 1 & -4 & 0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

$$
\text { i.e., } \begin{aligned}
a_{n k} & =1, k \leq n-1 \\
& =-(n-1), k=n ; \\
& =0, \text { otherwise. }
\end{aligned}
$$

Then $\sup _{n, k}\left|a_{n k}\right| \leq 1<\infty, \lim _{n \rightarrow \infty} a_{n k}=1, k=1,2, \ldots$ and $\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} a_{n k}=0$ so that $A \in$ $\left(\ell, c ; P^{\prime}\right) \cap(c, c)$ (for criterion for $A \in(c, c)$, see [5], [9]). Since $(c, c) \subset\left(c_{0}, c\right) \subset\left(\ell_{p}, c\right)$ where $p>1$, it follows that $\left(\ell, c ; P^{\prime}\right) \cap(X, c) \neq \emptyset$, when $X=c, c_{0}, \ell_{p}$ where $p>1$. This indicates a violent departure in when K is a non-archimedean valued field from the case $K=R$ or C.
$\left(c_{0}, c ; P^{\prime}\right)$ denotes the class of all infinite matrices $A \in\left(c_{0}, c\right)$ such that $\lim _{n \rightarrow \infty}(A x)_{n}=$ $\sum_{k=1}^{\infty} x_{k}$ whenever $x=\left\{x_{k}\right\} \in c_{0}$. In this context it is worthwhile to note that $\sum_{k=1}^{\infty} x_{k}$ converges if and only if $\left\{x_{k}\right\} \in c_{0}$.

Remark 3.3 :

$$
\left(c_{0}, c ; P^{\prime}\right)=\left(\ell, c ; P^{\prime}\right)
$$

Proof.

Adapting the proof of Theorem 2.1, with suitable modifications for the non-archimedean case, we have, $A \in\left(c_{0}, c ; P^{\prime}\right)$ if and only if (1) and (3) hold. The result now follows.

4. General remarks

It is to be noted that $\ell_{p}, p \geq 1, c_{0}, c, \ell_{\infty}$ are linear spaces with respect to coordinatewise addition and scalar multiplication irrespective of how K is chosen. When $K=R$ or C, c_{0}, c, ℓ_{∞} are Banach spaces with respect to the norm $\|x\|=\sup _{k \geq 1}\left|x_{k}\right|$ where $x=\left\{x_{k}\right\} \in$ c_{0}, c or ℓ_{∞}, while they are non-archimedean Banach spaces under the above norm when K is a complete, non-trivially valued, non-archimedean field.
Whatever be K, ℓ_{p} is a Banach space with respect to the norm

$$
\|x\|=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p}, x=\left\{x_{k}\right\} \in \imath_{\imath p}
$$

Whatever be K, if $A=\left(a_{n k}\right) \in\left(\ell, c ; P^{\prime}\right)$, then A is bounded and $\|A\|=\sup _{n, k}\left|a_{n k}\right|$. However, $\left(\ell, c ; P^{\prime}\right)$ is not a subspace of $B L(\ell, c)$, i.e. , the space of all bounded linear mappings of ℓ into c, since $\lim _{n \rightarrow \infty} 2 a_{n k}=2, k=1,2, \ldots$ and consequently $2 A \notin\left(\ell, c ; P^{\prime}\right)$ when $A \in\left(\ell, c ; P^{\prime}\right)$.

I thank the referee for his helpful comments which enabled me to present the material in a better form.

REFERENCES

[1] G. Bachman, Introduction to p-adic numbers and valuation theory, Academic Press, 1964.
[2] J.A. Fridy, Properties of absolute summability matrices, Proc. Amer. Math. Soc. 24 (1970), 583-585.
[3] I.J. Maddox, On theorems of Steinhaus type, J. London Math. Soc. 42 (1967), 239-244.
[4] I.J. Maddox, Elements of Functional Analysis, Cambridge University Press, 1977.
[5] A.F. Monna, Sur le théorème de Banach-Steinhaus, Indag. Math. 25 (1963), 121-131.
[6] P.N. Natarajan, The Steinhaus theorem for Toeplitz matrices in non-archimedean fields, Comment. Math. Prace Mat. 20 (1978), 417-422.
[7] P.N. Natarajan, Characterization of a class of infinite matrices with applications, Bull. Austral. Math. Soc. 34 (1986), 161-175.
[8] P.N. Natarajan, A Steinhaus type theorem, Proc. Amer. Math. Soc. 99 (1987), 559-562.
[9] P.N. Natarajan, Criterion for regular matrices in non-archimedean fields, J. Ramanujan Math. Soc. 6 (1991), 185-195.
[10] P.N. Natarajan, Characterization of some special classes of infinite matrices over non-archimedean fields, Indian J. Math. 34 (1992), 45-51.
[11] M. Stieglitz, H. Tietz, Matrixtransformationen von Folgenrämen Eine Ergebnisübersicht, Math. Z. 154 (1977), 1-16.

Department of Mathematics, Ramakrishna Mission Vivekananda College Madras - 600004 INDIA

