ALBERT BADRIKIAN Transformation of gaussian measures

Annales mathématiques Blaise Pascal, tome S3 (1996), p. 13-58 http://www.numdam.org/item?id=AMBP 1996 S3 13 0>

© Annales mathématiques Blaise Pascal, 1996, tous droits réservés.

L'accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http:// math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Transformation of Gaussian measures

Introduction

We shall be, in our lecture, mainly concerned by some particular cases of the following problem :

Let (X, \mathcal{F}, μ) be a measure space and $T : X \to X$ measurable. We denote by $T(\mu)$ or $\mu \circ T^{-1}$ the image of μ by T:

$$T(\mu) (A) = \mu \circ T^{-1} (A) = \mu (T^{-1}A), \quad \forall A \in \mathcal{F}.$$

When does $T(\mu) \ll \mu$ and how to compute the density?

Example 1: Let $X = \mathbb{R}^n$, $\mu = \lambda_n$ (the Lebesgue measure) and $T: X \to X$ a diffeomorphism. Then from the formula

$$\int f(T(x)) |\det T'(x)| dx = \int f(y) dy,$$

we conclude that $T(\lambda_n)$ is absolutely continuous with respect to λ_n and

$$T(\lambda_n) (dy) = |\det T'(T^{-1}y)|^{-1} dy = |\det (T^{-1})'(y)| dy.$$

Example 2: Let (Ω, \mathcal{F}, P) be the classical Wiener space, $\Omega = \mathcal{C}_0([0, 1]), \mathcal{F}$ the Borel σ -field, P the Wiener measure. Let $u : [0, 1] \times \Omega \to \mathbb{R}$ be a measurable and *adapted* stochastic process such that $\int_0^1 u_t^2(\omega) dt < \infty$ almost surely, and let $T : \Omega \to \Omega$ be defined by :

$$(T\omega)_t = \omega_t + \int_0^t u_s(\omega) \ ds.$$

Girsanov has proven that

$$T(P) \ll P$$
 .

On the other hand, let

$$\xi = \exp \left\{ -\int_0^1 u_t d\omega_t - rac{1}{2} \int_0^1 u_t^2(\omega) \ dt
ight\}$$

then, if $\mathbb{E}(\xi) = 1$. $(T\omega)_t$ is a Brownian motion with respect to (Ω, \mathcal{F}, Q) , where $\frac{dQ}{dP} = \xi$. That is $Q \circ T^{-1} = P$.

(This fact was first proven by means of the Itô-calculus, but as we shall see, we can obtain this by analytic methods).

This has an application in Statistical Communication Theory :

Suppose we are receiving a signal corrupted by noise, and we wish to determine if there is indeed a signal or if we are just receiving noise.

If x(t) is the received signal, $\xi(t)$ the noise and s(t) the emitted signal :

$$x(t) = s(t) + \xi(t) \tag{A}$$

In general, we make an hypothesis on the noise : it is a *white noise*.

The "integrated" version of (A) is

$$X(t) = \int_0^t s(u) \, du + W_t = S_t + W_t \tag{A'}$$

(W is the standard Wiener process, $X(t) = \int_0^t x(s) ds$ is the cumulative received signal).

Now we ask the question : is there a signal corrupted by noise, or is there just a noise $(s(t) = 0, \forall t)$?

The hypotheses are :

$$H_0: X_t = W_t$$
$$H_1: X_t = \int_0^t s(u) \ du + W_t.$$

We consider the likelihood ratio

$$\frac{d\mu_{W}}{d\mu_{X}} = \exp\left(-\int_{0}^{1} s(t) \ dW_{t} - \frac{1}{2}\int_{0}^{1} s(t)^{2} \ dt\right)$$

and we fix a threshold level for the type 1-error :

$$\begin{split} \text{if} \, : \, \frac{d\mu_{w}}{d\mu_{x}} \, \left(\omega\right) &\leq \lambda \quad \text{we reject } (H_{0}) \\ \text{if} \, : \, \frac{d\mu_{w}}{d\mu_{x}} \, \left(\omega\right) &\geq \lambda \quad \text{we accept } (H_{0}). \end{split}$$

Some general considerations and examples.

If
$$P \ll Q$$
, then $T(P) \ll T(Q)$. (a)

Therefore, we do not lose very much if we suppose that P and Q are probabilities.

In the case where Q is a probability, we can have an expression of $\frac{dT(P)}{dT(Q)}$ as conditional mathematical expectation.

Remark : From (a) we see that, if there exists a probability Q such that

$$P \ll Q$$
 and $T(Q) = P$, then $T(P) \ll P$.

The converse is true if moreover $\frac{dT(P)}{dP} > 0$. (The measures are equivalent). Therefore the following properties are equivalent :

- $(i) : T(P) \sim P,$
- (ii) : $\exists Q \sim P$ such that T(Q) = P.

Let us now consider an example which allows us to guess the situation in infinite dimensional space.

Let $\Omega = \mathbb{R}^n$ and $P = \gamma_n$ the canonical Gaussian measure with density :

$$\frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{\|x\|^2}{2}\right)$$

and let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism, then

$$\begin{split} &\int_{\mathbb{R}^n} f(y) T(\gamma_n)(dy) = \int_{\mathbb{R}^n} f(Tx) \ \gamma_n(dx) \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(Tx) \ \exp\left(-\frac{\|x\|^2}{2}\right) dx \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(Tx) \ \exp\left(-\frac{1}{2} \ \|T^{-1}Tx\|^2\right) dx \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \frac{f(y)}{|\det T'(T^{-1}y)|} \exp\left(\frac{1}{2} \ \|y\|^2 - \frac{1}{2} \ \|T^{-1}y\|^2\right) \exp\left(-\frac{1}{2}\|y\|^2\right) dy. \end{split}$$

Therefore :

$$\frac{dT(\gamma_n)}{d\gamma_n} (y) = \frac{1}{|\det T'(T^{-1}y)|} \exp\left(\frac{1}{2} \|y\|^2 - \frac{1}{2} \|T^{-1}y\|^2\right)$$
$$= |\det (T^{-1})'(y)| \exp\left(\frac{1}{2} \|y\|^2 - \frac{1}{2} \|T^{-1}y\|^2\right).$$

Now if we write :

 $T^{-1} = (I + S)$ with S self adjoint,

then :

$$(T^{-1})'(y) = I + S'(y)$$

and we obtain :

$$\frac{d(I+S)^{-1}(\gamma_n)}{d\gamma_n} (y) = |\det (I+S'(y))| \exp\{-(Sy,y)_{\mathbb{R}^n} - \frac{1}{2} \|S(y)\|^2\}.$$
(B)

This can be written as :

$$|\det (I + S'(y)) \exp (-\operatorname{Trace} S'(y)) \exp \left\{ -(Sy, y)_{\mathbb{R}^n} + \operatorname{Trace} S'(y) - \frac{1}{2} \|S(y)\|^2 \right\},$$

where $|\det (I + S'(y)| \exp (- \operatorname{Trace} S'(y))$ is the Carleman determinant.

General remark : If $T = Id(\Omega)$, it is clear that TP = P for every P. The idea is to perturb the identity operator.

The problem is :

"what does the word perturbation mean ?"

18

CHAPTER ONE Anticipative stochastic integral

1 - Gaussian measures on Banach spaces

Let E be a (real) separable Banach space, E' its dual. A (Borelian) probability μ on E is said to be "Gaussian centered" if for every $x' \in E'$, $\langle \bullet, x' \rangle_{E,E'} = x'(\bullet)$ is a Gaussian centered (real) variable (eventually degenerated) under μ . All what we shall say is true whatever be the dimension of E (finite or infinite).

If $x' \in E'$ we define $A: E' \to E$ by

$$Ax' = \int_E \langle x, x' \rangle_{E,E'} x d\mu(x),$$

(Bochner integral of a vector function). It is the *barycenter* of the measure $\langle \bullet, x' \rangle d\mu$.

A is injective if $\operatorname{Supp} \mu = E$.

Let $x \in A(E')$ so x = A(u') and let $y \in A(E')$ so y = A(v'), we shall put on $A(E') \subset E$ the following scalar product :

$$(x,y) \rightsquigarrow (x,y)_{\mu} := \int_E \langle u',z \rangle \ \langle v',z \rangle \ d\mu(z)$$

(it does not depend on u' and v').

 $A: E' \to E$ is continuous. (Since $\int_E ||x||^2 d\mu(x) < \infty$ by Fernique's theorem). Therefore, if *i* denotes the canonical injection of A(E') into E:

$$i : (A(E')), \|_{\bullet}\|_{\mu}) \to (E, \|_{\bullet}\|)$$
 is continuous.

Actually :

$$\begin{split} \|Ax'\|_{E} &= \sup_{\|y'\| \leq 1} \left| \int_{E} \langle x', x \rangle \langle y', x \rangle \ d\mu(x) \right| \\ &\leq \sup_{\|y'\| \leq 1} \left(\int_{E} |\langle x', x \rangle|^{2} d\mu(x) \right)^{\frac{1}{2}} \left(\int_{E} |\langle y', x \rangle|^{2} \ d\mu(x) \right)^{\frac{1}{2}} \\ &\leq \left(\int |\langle x', x \rangle|^{2} \ d\mu(x) \right)^{\frac{1}{2}} \left(\int \|x\|^{2} \ d\mu(x) g \right)^{\frac{1}{2}}; \end{split}$$

hence,

$$||Ax'||_E \leq C ||Ax'||_{\mu}$$
 (where C is a constant).

Let H_{μ} be the completion of A(E') with respect to $\|\cdot\|_{\mu}$. We have $\hat{i}: H_{\mu} \to E$. I say that \hat{i} is injective (it will allow us to consider H_{μ} as a subspace of E).

 H_{μ} is called the *"reproducing kernel Hilbert space"* (r.k.H.s.) of μ .

Example 1 : Finite dimension

$$E = \mathbb{R}^n$$
, $\operatorname{Supp} \mu = \mathbb{R}^n$:

$$Ax' = \int_E \langle x, x' \rangle \ x d\mu(x),$$

or :

$$\langle Ax'\,,\,y'
angle = \int_E \langle x\,,\,x'
angle\;\langle x\,,\,y'
angle\;d\mu(x).$$

A is the covariance, it is invertible and

$$(x,y)_{\mu} = \int_{E} \langle A^{-1}x,z \rangle \ \langle A^{-1}y,z \rangle \ d\mu(z) = \langle x,A^{-1}y \rangle,$$

and therefore :

$$H_{\mu} = \mathbb{IR}^n$$

Example 2 : Brownian motion, Wiener space.

Let T > 0 and $\Omega = E = \mathcal{C}([0, T], \mathbb{R})$ be the space of real continuous functions on [0, T].

There exists an unique centered measure μ such that :

a) the support of μ is $C_0([0,T], \mathbb{R})$, the space of the continuous functions vanishing at 0, b) $\forall t \in [0,T]: \quad \omega \rightsquigarrow \omega_t$ has the variance t,

c) let $0 \le t_1 < t_2 < ... < t_n \le T$, then : ω_{t_1} , $\omega_{t_2} - \omega_{t_1}$, ..., $\omega_{t_n} - \omega_{t_{n-1}}$ are independent.

We shall call μ the Wiener measure on $\mathcal{C}([0,T],\mathbb{R})$; then E' is the space of signed measures ν on [0,T]. We shall also denote :

$$\omega_t = B(t,\omega)$$

and call $t \rightsquigarrow B(t, \cdot)$: the "Brownian motion" on [0, T].

For $\nu_1, \nu_2 \in E'$ let :

$$egin{aligned} B(
u_1,
u_2) &= E \; [\langle
u_1\,,\,B
angle \; \langle
u_2\,,\,B
angle] \ &= \int_\Omega \langle
u_1,\omega
angle \; \langle
u_2,\omega
angle \; d\mu(\omega) \,. \end{aligned}$$

We have for $\nu \in E'$

$$\langle \nu, B \rangle = \int_{[0,T]} B(t,\omega) \ d\nu(t) = \int_0^T \nu \ ([t,T]) dB(t)$$
 (stochastic integral).

This fact can be verified as follows :

- it is true for $\nu = \delta_s$ (by definition of Brownian motion),
- by linearity this remains true if $\nu = \sum \ \alpha_i \delta_{t_i} \, ,$
- then we apply a continuity argument.

Therefore

$$B(\nu_1,\nu_2) = \int_{[0,T]} \nu_1([t,T]) \ \nu_2([t,T]) dt$$

Now let ν_1 be a measure on [0, T]. We want to find the barycenter m_{ν_1} of the random variable on $\Omega : \omega \rightsquigarrow \langle \omega, \nu_1 \rangle$. $(m_{\nu_1}$ is an element of $\Omega = \mathcal{C}([0, T])$. It is defined by

$$\nu \rightsquigarrow \langle m_{\nu_1}, \nu \rangle = \int_{[0,T]} m_{\nu_1}(t) \ \nu(dt) = B(\nu, \nu_1) = \int_{[0,T]} \nu_1([t,T]) \ \nu([t,T]) \ dt$$

By the generalized integration by parts this is equal to :

$$\int_{[0,T]} J(\nu_1)(t) \ d\nu(t)$$

where

$$J(\nu_1)(t) = \int_0^t \nu_1([u,T]) \, du$$

 $J(\nu_1)$ is then absolutely continuous. On the space

$$\left\{J(\nu_1), \ \nu_1 \in \mathcal{M}([0, T])\right\}$$

we put the norm

$$J(\nu_1) \rightsquigarrow \int_0^T \nu_1([t,T])^2 dt.$$

Its completion is the space of functions from [0, T] into \mathbb{R} absolutely continuous, null at zero, whose derivative belongs to $L^2([0, T], dt)$. It is the Cameron-Martin space.

Then the Cameron-Martin space is the reproducing kernel Hilbert space of the Wiener measure $\mu.$

Definition : We call an "abstract Wiener space" a triple (H, E, μ) where :

- E is a separable Banach space, and μ is a centered Gaussian measure on E, whose topological support is E.
- H is the r.k.H.s. associated to μ .

Actually H is dense in E. This can be proven as follows :

Let $i: H \longrightarrow E$ be the canonical injection and $i^*: E' \longrightarrow H$ its transpose (we identify H to its dual).

Suppose that $\langle x', i(x) \rangle_{E,E'} = 0$ for every $x \in H$. This is equivalent in saying that :

$$(x \mid i^*(x'))_H = 0$$
, for every $x \in H$.

Therefore

$$i^*(x')=0.$$

This means that

$$\|i^*(x')\|_H^2 = \int_E |\langle x',y
angle_{E,E'}|^2 \ d\mu(y) = 0.$$

Therefore

$$\langle x', y \rangle = 0$$
 almost surely,

so this holds for all $y \in E$ since $\text{Supp } \mu = E$ and x' is continuous. The transpose i^* from $i: H \to E$ is therefore injective and dense and we have :

 $E' \stackrel{i^*}{\to} H \stackrel{i}{\to} E \quad (\ i \ {\rm is \ the \ canonical \ injection}) \, .$

Every $x' \in E'$, defines a Gaussian centered random variable on E', whose variance is

 $||i^*(x')||_H^2$.

Now we give without proof some properties of an abstract Wiener space :

- 1) H is separable, as a Hilbert space. Therefore it is a borelian subset of E,
- 2) $\mu(H) = 0$ or 1 and $\mu(H) = 0 \Leftrightarrow dimH = +\infty$ (therefore $\mu(H) = 1 \Leftrightarrow dimH < \infty$),
- 3) H is the intersection of the family of measurable subspaces of E, whose probability is equal to one,
- 4) the canonical injection $i: H \to E$ is compact,
- 5) for every Hilbert space K and $u: E \to K$ linear continuous, $u \circ i: H \to K$ is Hilbert-Schmidt,
- 6) for every Hilbert space K and $v: K \to E'$ linear continuous, $i^* \circ v: K \to H$ is Hilbert-Schmidt.

As a consequence of 5) and 6) we have :

7) let K_1, K_2 two Hilbert spaces ; $u_1 : K_1 \to E'$ and $u_2 : E \to K_2$ linear continuous then

$$K_1 \xrightarrow{u_1} E' \xrightarrow{i^*} H \xrightarrow{i} E \xrightarrow{u_2} K_2$$
,

the composition $u_2 \circ i \circ i^* \circ u_1$ is nuclear (i.e. it possesses a trace).

2 - L^2 -functionals on an abstract Wiener space

Let (H, E, μ) be an abstract Wiener space.

Suppose $(e_j)_{j\geq 1}$ is a sequence of elements of E' such that $(i^*(e_j))_{j\geq 1}$ is an orthonormal basis in H. A function $f: E \longrightarrow \mathbb{R}$ is said to be a polynomial in the (e_j) if there exists an integer n and a polynomial function P on \mathbb{R}^n such that

$$f(x) = P(e_1(x), \dots, e_n(x)), \quad \forall x \in E.$$

We denote deg $f :\equiv \deg P$ (P is not defined uniquely but the degree of f is independent of the choice of P).

We denote by $\mathcal{P}((e_j))$ the set of polynomials and by $\mathcal{P}^n((e_j))$ the set of polynomials of degree $\leq n$. It is easy to see that $\mathcal{P}((e_j))$ is contained in each $\mathcal{L}^p(E,\mu)$ $0 \leq p < \infty$ (but clearly not in $L^{\infty}(E,\mu)$). Moreover, $\mathcal{P}((e_j))$ is dense in $L^p(E,\mu)$ for these p. Therefore, $\overline{\mathcal{P}((e_j))}_{L^p}$ is independent of the chosen orthonormal family (e_j) . The same is true for each $\mathcal{P}^n((e_j))$. **Example :** If n = 1, $\mathcal{P}^1((e_j))$ is the family of affine continuous functions : an element of $\mathcal{P}^1((e_j))$ is a linear continuous function on E plus a constant.

We have :

$$\overline{\mathcal{P}^1}_{L^2(E,\mu)} \equiv H \oplus \mathbb{R} \quad (\text{see infra}).$$

We call $\overline{\mathcal{P}^n}_{L^2}$ the set of *generalized* polynomials of degree at most n; $\overline{\mathcal{P}^n}_{L^2}$ is a Hilbert space.

Let us now introduce the "Wiener chaos decomposition" (or "Wiener-Itô decomposition"). Let $C_0 = \overline{\mathcal{P}^0}_{L^2}$ the vector space of (μ -equivalence classes of) constants. We define C_n inductively as follows :

 \mathcal{C}_n is the orthogonal complement in $\overline{\mathcal{P}^n}_{L^2}$ of $(\mathcal{C}_0 \oplus ... \oplus \mathcal{C}_{n-1})$.

(In other words C_n is the set of generalized polynomials of degree n, orthogonal to all generalized polynomials of degree less than n).

It is clear that for every n:

$$\overline{\mathcal{P}^n}_{L^2} = \mathcal{C}_0 \oplus \ldots \oplus \mathcal{C}_n$$

and moreover

$$L^2(E,\mu) = \bigoplus_{n=0}^{\infty} C_n.$$

The C_n are called the "*nth chaos*" (or "*chaos of order n*"). C_1 is isomorphic to H. We have a description of elements of C_n in term of Hermite polynomials.

We recall that the Hermite polynomials in one variable are defined by :

$$H_n(t) = \frac{(-1)^n}{n!} \exp\{\frac{t^2}{2}\} \frac{d^n}{dt^n} \left(\exp\{-\frac{t^2}{2}\}\right), \qquad n \in \mathbb{N}.$$

Then they satisfy :

•
$$\sum_{n=0}^{\infty} \lambda^n H_n(t) = \exp\left\{-\frac{\lambda^2}{2} + \lambda t\right\}$$

•
$$\frac{d}{dt} H_n(t) = H_{n-1}(t)$$

•
$$\int_{\mathbb{R}} H_m(t) H_n(t) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{t^2}{2}\right\} dt = \frac{1}{n!} \delta_{nm}.$$

Let $\alpha = (\alpha_1, \alpha_2, ...,) \in \mathbb{N}^{\mathbb{N}}$ such that $|\alpha| := \sum_{i=1}^{\infty} \alpha_i < \infty$. We set $\alpha! := \prod_{i=1}^{\infty} \alpha_i!$.

Now let $(e_n)_{n\geq 1}$ be a sequence of elements of E' which is an orthonormal basis in H. If $\alpha \in \mathbb{N}^{\mathbb{N}}$ let

$$H_{lpha}(x) := \prod_{i=1}^{\infty} H_{lpha_i} (e_i(x))$$

(This product is well defined). Then:

 $\{ \sqrt{\alpha!} \ H_{\alpha}(x), \quad \alpha \in \mathbb{N}^{\mathbb{N}} \text{ and } |\alpha| < +\infty \} \text{ is an orthonormal basis in } L^{2}(E,\mu) \text{ and } :$ $\{ \sqrt{\alpha!} \ H_{\alpha}(x), \quad |\alpha| = n \} \text{ is an orthonormal basis in } \mathcal{C}_{n}.$

In the case of the Wiener measure associated to Brownian motion, we have the following characterization of C_n in terms of multiple stochastic integrals :

 $F: \mathcal{C}([0,T],\mathbb{R}) \to \mathbb{R}$ belongs to $L^2(P)$ where P is the Wiener measure if and only if for each n there exists $f_n \in L^2(\Delta_n, dt)$ where $\Delta_n = \{t \in \mathbb{R}^n, 0 \le t_1 \le t_2 \le \dots \le t_n \le T\}$ such that

$$F = \sum_{n} \int_{\Delta_{n}} f_{n}(t_{1}, ..., t_{n}) \ dB \ (t_{1})...dB \ (t_{n}) = \sum_{n} F_{n} .$$

Here

$$F_0 = \mathbb{E}(F) \in \mathcal{C}_0 \text{ and } F_n \in \mathcal{C}_n.$$

3 - Measurable linear functionals and linear measurable operators

Let (H, E, μ) be an abstract Wiener space. Without loss of generality, we shall identify H as a subspace of E (i.e., i(x) = x).

A linear mapping $f: E \to \mathbb{R}$ is said to be a "linear measurable functional" if there exists a sequence of linear continuous functionals on E, converging to f, μ -almost surely.

If $x \in H$, it defines a linear measurable functional $\tilde{x}(\cdot)$. Actually, if x_n is a sequence of elements of $E' \subset H$ such that $x_n \longrightarrow x$ in H, then $x_n(\cdot)$ converges to the random variable \tilde{x} defined by x, in $L^2(E, \mu)$. Therefore, there exists a subsequence converging almost surely to \tilde{x} . Moreover,

$$\int_E |\widetilde{x}(x)|^2 \ d\mu(x) < \infty \, .$$

The converse is true, shown by the following proposition .

If $h \in H$, the random variable \tilde{h} on E will be denoted by

 $x \rightsquigarrow (x,h)_H.$

Proposition : Every linear measurable functional, f, has a restriction to H which is continuous (for the Hilbertian topology). If we denote by f_0 this restriction we have

$$||f||_{L^2(E,\mu)} = ||f_0||_H.$$

The converse is true.

Proof:

We have already noticed that the converse is true. Let $(x_n) \subset E' \subset H$ such that

$$x_n(x) \longrightarrow f(x) \quad \forall x \in A, \text{ where } \mu(A) = 1.$$

Take \mathcal{E} the linear subspace generated by A, we see that the above convergence holds for all $x \in \mathcal{E}$. Since $\mu(\mathcal{E}) = 1$, then $H \subset \mathcal{E}$ and therefore

$$x_n(x) \longrightarrow f(x), \quad \forall x \in H.$$

Therefore the restriction of f to H is uniquely defined. Now,

$$\int_E \exp \{i(x_n - x_m)(x)\} \ \mu(dx) = \exp \{-\frac{1}{2} \|x_n - x_m\|_H^2\} \longrightarrow 1.$$

Therefore, (x_n) converges in H, and

$$\int_E |x_n(x) - x_m(x)|^2 \ \mu(dx) = \|x_n - x_m\|_H^2 \quad \xrightarrow[m,n\to\infty]{} 0$$

Therefore $(x_n(\cdot))$ converges in $L^2(\mu)$. The limit is equal to f almost surely, as we can see immediately.

$$-Q.E.D.-$$

Now let K be a Hilbert space. As before we define a linear measurable function from E to K, as the almost sure limit of a sequence of linear continuous functions from E to K.

And, as before, if A is a linear measurable function from E into K, its restriction to H is well defined and continuous from H to K.

Let us remark that if A is a linear measurable function from E to K, we can define its transpose as a linear function from K to H since, for every $\varphi \in K$, $x \rightsquigarrow \langle Ax, \varphi \rangle_K$ is a linear measurable functional on E therefore defined by an element of H. We have

$$\langle Ax, \varphi \rangle_K = (A^* \varphi)(x),$$
 almost surely
= $(x, A^* \varphi)_H$

where A^* is the conjugate of the restriction of A to H.

Now we can prove the following result :

THEOREM : If A is a linear measurable function from E to K such that $\int ||Ax||_K^2 d\mu(x) < \infty$, then its restriction to H is a Hilbert-Schmidt mapping B from H to K. Conversely if B is a Hilbert-Schmidt mapping from H to K, (we shall note $B \in \mathcal{L}^2(H, K)$ or $B \in \mathcal{L}_2(H, K)$), it possesses a linear measurable continuation on E, denoted by A.

Moreover, we have :

$$\int_E \|Ax\|_K^2 \ d\mu(x) = \|B\|_{H-S}^2$$

Proof:

Let (φ_j) be an orthonormal basis of K. We have :

$$||Ax||_{K}^{2} = \sum_{j} (Ax, \varphi_{j})_{K}^{2} \stackrel{a.s}{=} \sum_{j} (x, A^{*}\varphi_{j})_{H}^{2}.$$

If we integrate term by term these equalities, we obtain :

$$\int_{E} \|Ax\|_{K}^{2} d\mu(x) = \sum_{j} \int_{E} (x, A^{*}\varphi_{j})_{H}^{2} d\mu(x)$$
$$= \sum_{j} \|A^{*}\varphi_{j}\|_{H}^{2} = \sum_{j} \|B^{*}\varphi_{j}\|_{H}^{2} = \|B^{*}\|_{H-S}^{2}.$$

Conversely let $B \in \mathcal{L}_2(H, K)$. We have for $x \in H$:

$$Bx = \sum_{j} (Bx, \varphi_j)_K \varphi_j$$
$$= \sum_{j} (x, B^* \varphi_j)_H \varphi_j$$

Now each term in the right-hand member possesses a linear measurable continuation to E, and the series converges in $\mathcal{L}_2(E,\mu,K)$.

We have then defined a linear measurable extension of A to E.

-Q.E.D.-

4 - Derivatives of functionals on a Wiener space

Let (E, H, μ) be an abstract Wiener space and let K be another Hilbert space. Let $f: E \to K$ be a function.

We say that f possesses a Fréchet derivative in the direction of H, at the point $x_0 \in E$ if there exists an element denoted $f'(x_0)$ or $Df(x_0)$ or $\nabla f(x_0) \in \mathcal{L}(H, K)$ such that $f(x_0 + h) - f(x_0) = f'(x_0) \bullet h + o(||h||_H), \forall h \in H$.

Inductively we can define derivatives of all orders.

Example : Let $x_0 \in H \setminus i^*(E')$ and let f be a measurable continuation of $h \rightsquigarrow (x_0, h)_H$ to E. (f is not continuous).

Then f is derivable at every x, and $f'(x_0) \in H$.

This example shows that a discontinuous function may have Fréchet derivatives in the direction of H.

Definition 1 : Let us denote by $C^{2,1}(E, K)$ the set of functions $f : E \to K$ possessing the following properties :

- f possesses H-derivatives at every point $x \in E$ and f'(x) is Hilbert-Schmidt for every x,

- f and f' are continuous from H to K and to $\mathcal{L}_2(H, K)$ respectively,

 $- |||f|||_{2,1}^2 := \int_E \left[||f(x)||_K^2 + ||f'(x)||_{\mathcal{L}^2(H,K)}^2 \right] \, \mu(dx) < \infty \, .$

Then $\mathcal{C}^{2,1}(E,K)$ is a vector space and $|||_{\bullet}|||_{2,1}$ is a Hilbertian norm on this space.

Definition 2: Let $\mathbb{D}^{2,1}(E, K)$ be the completion of $\mathcal{C}^{2,1}(E, K)$ for the preceding norm; $\mathbb{D}^{2,1}(E, K)$ is then a Hilbert space.

Clearly the elements of $\mathbb{D}^{2,1}(E,K)$ are μ -equivalence classes of functions.

Convention : Often we shall write $\mathbb{D}^{2,1}(K)$ instead of $\mathbb{D}^{2,1}(E,K)$. In the same manner we shall write $\mathbb{D}^{2,1}$ instead of $\mathbb{D}^{2,1}(E,\mathbb{R})$ or $\mathbb{D}^{2,1}(\mathbb{R})$.

Now the map $f \rightsquigarrow f'$ from $\mathcal{C}^{2,1}(E, K)$ into $L^2(E, \mu, \mathcal{L}_2(H, K))$ is clearly continuous ; therefore it possesses a unique continuous extension from $\mathbb{D}^{2,1}(H, K)$ into $L^2(E, \mu, \mathcal{L}_2(H, K))$. This extension is again denoted by f', or Df, or ∇f .

Example 1 : Let f be a polynomial function on E, with values in \mathbb{R} :

$$f(x) = P(\langle f_1, x \rangle_{E', E}, ..., \langle f_n, x \rangle_{E', E}), \quad f_1, ..., f_n \in E'.$$

Then $f \in \mathcal{C}^{2,1}$ and

$$f'(x) = \sum_{j=1}^{n} \frac{\partial P}{\partial y_j} \left(\langle f_1, x \rangle_{E', E}, ..., \langle f_n, x \rangle_{E', E} \right) \, i^*(f_j).$$

The same result is true if P is a $\mathcal{C}^1(\mathbb{R}^n)$ -function such that P and the partial derivatives $\frac{\partial P}{\partial y_i}$ have polynomial growth.

In the same manner if f is defined (μ -almost everywhere) as

$$f(\bullet) = P(\widetilde{h}_1(\bullet), \ldots, \widetilde{h}_n(\bullet)), \quad h_j \in H$$

with P a polynomial function (or a $C^1(\mathbb{R}^n)$ -function with polynomial growth together with its derivatives),

$$\nabla f = \sum_{j=1}^{n} \frac{\partial P}{\partial y_j} \left(\widetilde{h}_1(\bullet), \ldots, \widetilde{h}_n(\bullet) \right) h_j.$$

Example 2: Let $\mu = \gamma_n$ the canonical Gaussian measure on \mathbb{R}^n , $\mathbb{D}^{2,1}$ is the Sobolev space $W^{2,1}(\gamma_n)$ of the distributions in \mathbb{R}^n such that :

- $f \in L^2(\mathbb{R}^n, \gamma_n)$,

- the distribution derivatives of f belong to $L^2(\mathbb{R}^n, \gamma_n)$. The norm of $\mathbb{D}^{2,1}$ is the usual Hilbertian norm :

$$f \rightsquigarrow \left(\int_{\mathbb{R}^n} \left[|f(x)|^2 + \sum_{j=1}^n \left|\frac{\partial f}{\partial x_j}(x)\right|^2\right] d\gamma_n(x)\right)^{\frac{1}{2}}.$$

Example 3 : If f is a polynomial function with values in K :

$$f(x) = \sum_{j=1}^{m} P_j(\langle f_1, x \rangle_{E',E}, ..., \langle f_n, x \rangle_{E',E}) k_j$$
$$(k_j \in K, \quad f_1, ..., f_n \in E').$$
$$\nabla f(x) = \sum_j \sum_i \frac{\partial P_j}{\partial y_i} (\langle f_1, x \rangle_{E',E}, ..., \langle f_n, x \rangle_{E',E}) f_i \otimes k_j$$

(Analogous assertion for generalized polynomials, or "moderate" regular functions P_j).

Example 4 : Characterization of the elements of $\mathbb{D}^{2,1}$ in the case of the Wiener measure.

If $E = C_0([0, T], \mathbb{R})$ and μ is the Wiener measure, we have seen that an element of $L^2(\mu)$ can be written as a series

$$F = \sum_{n=0}^{\infty} \sqrt{n!} \int_{\Delta_n} f_n(t_1, t_2, ..., t_n) \ dB_{t_1}, ..., dB_{t_n}$$

with

$$\sum_{n=0}^{\infty} n! \|f_n\|_{L^2(\Delta_n)}^2 < \infty.$$

Then F belongs to $\mathbb{D}^{2,1}$ if and only if

$$\sum_{n=1}^{\infty} nn! \, \|f_n\|_{L^2(\Delta_n)}^2 < \infty$$

and in this case

$$\nabla F = \sum_{n=1}^{\infty} nJ \left(I_{n-1}(f_n^t) \right)$$

where f_n^t is the function defined on $\Delta_{n-1}^t = \{0 \le t_1 < t_2 < ... < t_{n-1} < t\}$ by

$$f_n^t(t_1, t_2, ..., t_{n-1}) = f_n^{SYM}(t_1, t_2, ..., t_{n-1}, t),$$

 f_n^{SYM} being the symetrisation of f_n .

The formula needs an explanation :

In the right member

$$(t,\omega) \rightsquigarrow I_{n-1} (f_n^t)(\omega) = g(t,\omega)$$

belongs to

$$L^2([0,T] \times \Omega, dt \otimes dP),$$

therefore for almost ω ,

$$t \rightsquigarrow g(t,\omega)$$
 is a $L^2([0,T],dt)$ function

 $J(I_{n-1}(f_n^t))(\omega)$ is the indefinite integral null at zero of $I_{n-1}(f_n^t)(\omega)$:

$$J(I_{n-1}(f_n^t)) = \int_0^t I_{n-1}(f_n^s) \, ds \, .$$

Therefore $\nabla F(\omega)$ is an element of the Cameron-Martin space.

We now give several useful properties of $\mathbb{D}^{2,1}(E,K)$:

- The set of polynomial functions on E, with values in K is dense in $\mathbb{D}^{2,1}(K)$.
- Therefore the algebraic sum of chaos $\sum C_n$ is dense in $\mathbb{D}^{2,1}$.
- The set of *smooth functions* on E is dense in $C^{2,1}$ (a function is said to be "*smooth*" if it has the form :

$$x \rightsquigarrow f(\langle f_1, x \rangle_{E', E}, ..., \langle f_n, x \rangle_{E', E})$$

with f belonging to $\mathcal{C}_b^{\infty}(\mathbb{R}^n)$; f and its derivatives are bounded).

• Let $\varphi : \mathbb{R}^n \to \mathbb{R}$ be a function in $\mathcal{C}^1_b(\mathbb{R}^n)$ and let $F^1, ..., F^n \in \mathbb{D}^{2,1}$. Then $\varphi(F^1, ..., F^n)$ is in $\mathbb{D}^{2,1}$ and

$$\nabla \left(\varphi(F^1,...,F^n) \right) = \sum_{i=1}^n \frac{\partial \varphi}{\partial y_i}(F^1,...,F^n) \ \nabla F^i.$$

This result is false if the above hypothesis is not satisfied. For instance on IR,

$$f = g = e^x \in \mathbb{D}^{2,1}$$
. but $f \circ g \notin L^2(\mathbb{R}^n, \gamma_n)$.

Remark : The operator ∇ , called the "stochastic" gradient, or "stochastic" derivative, is very close to the ordinary gradient as we can see. The usual gradient at the point x_0 is an element of E' (if the function takes its values in IR). The stochastic gradient is the composite of the ordinary gradient by the application i^* from E' to H.

In an analogous manner if $f: E \to K$ has an ordinary gradient, this gradient is a linear mapping of E into K; $f': E \to K$.

The transpose ${}^{t}f'$ is a linear continuous mapping from K into E'. Then the stochastic gradient is equal to $i^{*}({}^{t}f') \in \mathcal{L}(K, H)$.

In his lectures at the EIPES in 1989, D. Nualart, in the case of usual Wiener space defined the stochastic derivative of the functional of the form :

$$F = f(W_{t_1}, ..., W_{t_n}), \qquad f \in \mathcal{C}_b^{\infty}(\mathbb{R}^n) \quad (\text{or } f \text{ polynomial})$$

by

$$DF = \sum_{j=1}^{n} \frac{\partial F}{\partial y_{j}} (W_{t_{1}}, ..., W_{t_{n}}) \mathbf{1}_{[0, t_{j}]}.$$

This definition is actually equivalent to ours, up to the notations.

Actually, let $h_j(t) = \int_0^t 1_{[0,t_j]}(s) ds$, h_j belongs to the Cameron-Martin space and

$$W_{t_j} = \widetilde{h}_j = \langle h_j, \bullet \rangle_{C-M}$$

The stochastic derivate of F in our notations is therefore

$$\sum_{j=1}^{n} \frac{\partial F}{\partial y_j} (\widetilde{h}_1, ..., \widetilde{h}_n) h_j.$$

There are actually equivalent since the Cameron-Martin space is isomorphic as Hilbert space to $L^2([0,T], dt)$. We shall have to consider ∇ as an operator (densely defined) from $L^{2}(E, \mu, K)$ into $L^{2}(E, \mu, \mathcal{L}_{2}(H, K))$. It is a closed operator, naturally not continuous.

5 - Anticipative stochastic integral

Definition: The transpose of the operator ∇ is called the "Skorokhod integral", or the "divergence operator".

The definition needs an explanation : on $L^2(E,\mu,K)$ (K : Hilbert space) we have defined the scalar product

$$(f,g) \rightsquigarrow \int_E \langle f(x),g(x)\rangle_K \ d\mu(x)$$

and on $L^2(E, \mu, \mathcal{L}_2(H, K))$ we have the pairing :

$$(F,G) \rightsquigarrow \int_E \langle F(x), G(x) \rangle_{\mathcal{L}_2(H,K)} d\mu(x)$$
$$= \int_E \operatorname{Trace} \left(G^*(x) \circ F(x) \right) d\mu(x)$$

Then $G \in L^2(E, \mu, \mathcal{L}_2(H, K))$ belongs to dom (δ) if and only if the linear form on $\mathbb{D}^{2,1}(K)$: $F \rightsquigarrow \int_{F} \langle DF, G \rangle_{\mathcal{L}_{2}(H,K)}(x) d\mu(x)$ is continuous for the topology induced by $L^{2}(E,\mu,K)$.

We denote δ the Skorokhod integral and we have by definition, for every $F \in \mathbb{D}^{2,1}(K)$,

$$\int_E \langle F, \delta G \rangle_K d\mu = \int_E \langle \nabla F, G \rangle_{\mathcal{L}^2(H,K)} d\mu \quad \text{ if } \delta(G) \text{ is defined } A$$

Example 1 : Let $a \in H$, and $\varphi \in \mathbb{D}^{2,1}(K)$. Then $G := \varphi \otimes a$ is Skorokhod integrable and

$$\delta(a\otimes \varphi) = \widetilde{a}(\bullet) \ \varphi - \langle \nabla \varphi, a \rangle.$$

In particular, if $G: E \to H$ is such that $G(x) = a, \forall x :$

$$\delta G = \widetilde{a}(\bullet).$$

Example 2 : $E = \mathbb{R}^n, \mu = \gamma_n, \quad G : \mathbb{R}^n \to \mathbb{R}^n.$ Then

$$\delta G(x) = \langle x, G(x) \rangle_{\mathbb{R}^n} - \sum_{j=1}^n \frac{\partial G_j}{\partial x_j} (x)$$
$$= \langle x, G \rangle - \text{div } G(x).$$

This formula can be written in another manner :

$$\delta G = \langle \bullet, G \rangle - \text{Trace} \ (\nabla G).$$

Example 3 : If $G \in \mathbb{D}^{2,1}(E,\mu,\mathcal{L}^2(H,K))$, then it is δ -integrable, and δ is continuous from $\mathbb{D}^{2,1}(\mathcal{L}_2(H,K))$ in $L^2(E,\mu,K)$.

Example 4 : Let $F \in L^2(E, \mu, H)$ such that for every $h \in H : \nabla(\langle F, h \rangle_H)$ exists. Then for every linear continuous operator $A : H \to H$ with *finite rank*, A(F) is Skorokhod integrable.

More precisely, if $A = \sum_{j=1}^{n} \langle \cdot, a_j \rangle_H e_j$ (with a_j and e_j in H, (e_j) being orthonormal)

we have :

$$A(F) = \sum_{j=1}^{n} \langle F, a_j \rangle_H e_j$$
$$\delta(A(F)) = \sum_{j=1}^{n} \left[\langle F, a_j \rangle \ \tilde{e}_j - \nabla_{e_j} \ \left(\langle F, a_j \rangle \right) \right].$$

(see example 1).

This can be written in another manner :

Let A^* be the transpose of $A : A^* = \sum_{j=1}^n \langle \bullet, e_j \rangle_H a_j$ and let \widetilde{A}^* defined as :

$$\widetilde{A}^* = \sum_{j=1}^n a_j \ \widetilde{e}_j \, .$$

Then

$$\delta(A(F)) = \langle F, \widetilde{A}^* \rangle_H - \sum_{j=1}^n \nabla_{e_j} \left(\langle F, a_j \rangle \right)$$

If we now suppose that DF exists, we have :

$$\sum_{j=1}^{n} \nabla_{e_j} \left(\langle F, a_j \rangle \right) = \text{Trace} \left(A \circ DF \right).$$

Therefore, we have :

$$\delta(A(F)) = \langle F(\bullet), \widetilde{A}^*(\bullet) \rangle_H - \text{Trace} (A \circ DF).$$

Example 5 : The Skorokhod integral coincides with the ordinary Itô-Integral for adapted processes (see the above mentioned Nualart's Lecture Notes for a precise statement of this fact).

Now we give some properties of the Skorokhod integral :

a) Let $A: K \to K'$ be a linear continuous operator (K and K' Hilbert spaces) and let $F \in L^2(E, \mu, \mathcal{L}_2(H, K))$. If F is Skorokhod-integrable so is $A \circ F$ and we have

$$\delta(A \circ F) = A(\delta F) \,.$$

As a consequence we have :

- Let $F \in L^2(E, \mu, \mathcal{L}_2(H, K))$ such that $\delta(F)$ exists, then for every k in K we have $\langle \delta(F), k \rangle = \delta(F^*(k)).$

Transformation of Gaussian measures

- Let $F \in L^2(E, \mu, \mathcal{L}_2(H, \mathcal{L}_2(H, K)))$ such that $\delta(F)$ exists, then

for every
$$h \in H, \ \delta \ (\stackrel{\lor}{F}({\scriptscriptstyle ullet})(h))$$
 exists

and

$$\delta(F)(h) = \delta(\check{F}(\bullet)(h)).$$

If $F \in \mathcal{L}^2(H, \mathcal{L}_2(H, K))$, $\overset{\vee}{F}$ denotes the operator of $\mathcal{L}^2(H, \mathcal{L}_2(H, K))$ such that :

$$\stackrel{\vee}{F}(h)(h')=F(h')(h), \quad h,h'\in H.$$

b) Let $\varphi \in \mathbb{D}^{2,1}$, $F \in \mathcal{L}^2(E,\mu,H)$ such that F is Skorokhod integrable. Suppose that $\varphi F \in L^2(E,\mu,H)$ and that $\delta(F)\varphi - \langle F, D\varphi \rangle_H$ belongs to $L^2(E,\mu)$, then φF is Skorokhod integrable and

$$\delta(\varphi F) = \delta(F)\varphi - \langle F, D\varphi \rangle_H.$$

c) Let $A_n: H \to H$ a sequence of linear continuous operators such that $A_n \longrightarrow Id_H$ in the simple convergence.

Let $F \in \mathbb{D}^{2,1}(\mathcal{L}_2(H,K))$, then $\delta(F \bullet A_n) \longrightarrow \delta(F)$ in $L^2(E,\mu,K)$. In particular, if (e_n) is an orthonormal basis of H, the sequence

$$\left(\sum_{i=1}^{n} \widetilde{e}_{i} F(e_{i}) - \nabla_{e_{i}} F(e_{i})\right)$$

converges to $\delta(F)$.

d) Let F, G in $\mathbb{D}^{2,1}(H)$ we have :

$$\mathbb{E}(\delta(F)\delta(G)) = \mathbb{E}\{\langle F, G \rangle_{H}\} + \mathbb{E}\{\langle DF, (DG)^{*} \rangle_{\mathcal{L}_{2}(H,H)}\}$$
$$= \mathbb{E}\{\langle F, G \rangle_{H}\} + \mathbb{E}\{\text{Trace } DG(\bullet) \circ DF(\bullet)\}.$$

More generally, if F and G belong to $\mathbb{D}^{2,1}(\mathcal{L}_2(H,K))$ we have :

$$\mathbb{E}\{\langle \delta F, \delta G \rangle_K\} = \mathbb{E}\{\langle F, G \rangle_{\mathcal{L}^2(H,K)}\} + \mathbb{E}\{\langle DF, DG \rangle_{\mathcal{L}_2(H,\mathcal{L}_2(H,K))}\}.$$

e) The operator δ , as an operator densely defined from $L^2(E, \mu, \mathcal{L}_2(H, K))$ into $L^2(\Omega, \mu, K)$ is *closed*.

We now briefly introduce the Ogawa integral.

Let $P: H \to H$ be an orthogonal projector with finite rank : $P(h) = \sum_{j=1}^{n} \langle h, e_j \rangle_H e_j$.

We denote \widetilde{P} the random variable with values in H :

$$\widetilde{P}(\bullet) := \sum_{j=1}^{n} \widetilde{e}_{j}(\bullet) \ e_{j}$$

Now let $F \in L^0(E, \mu, H)$ be a random variable with values in H. We shall say that F is "Ogawa integrable", if there exists $G \in L^0(E, \mu)$ such that, for every increasing sequence (P_n) of orthogonal projectors converging simply to Id_H , the sequence of real random variables $(\langle F, \tilde{P}_n \rangle_H)_n$ converges to G in probability.

We shall denote by $\mathring{\delta}(F)$ the Ogawa integral G of F. If $F \in L^2(E, \mu, H)$ is such that, for every $a \in H$:

 $\langle F, a \rangle_H \widetilde{a}(\bullet)$ belongs to $L^2(E, \mu)$,

we shall say that F is "2-Ogawa integrable" when there exists $G \in L^2(E,\mu)$ such that

 $\langle F, \tilde{P}_n \rangle_H \longrightarrow G$ in quadratic mean.

(The P_n being as above).

Example : $(E, \mu) = (\mathbb{R}^n, \gamma_n)$. The Ogawa integral is equal to $\langle \bullet, F(\bullet) \rangle_{\mathbb{R}^n}$. In this case, we have :

$$\check{\delta}(F) = \delta(F) + \text{Trace } (\nabla F).$$

Remark : There exists elements of $\mathbb{D}^{2,1}(H)$ which do not possess an Ogawa integral (Rosinski).

For instance, in the case of the Brownian motion, the function : $\omega \rightarrow J(B(T-\bullet)(\omega))$ where J denotes the indefinite integral null at zero, belongs to $\mathbb{D}^{2,1}(H)$ but is not Ogawa integrable. Next we give a necessary and sufficient condition for Ogawa integrability : Let $F \in \mathbb{D}^{2,1}(H)$; F is Ogawa integrable if and only if, for almost every x :

$$DF \in \mathcal{L}_1(H, H) \quad (\iff DF \quad is \ nuclear)$$

and we have :

$$\delta(F) = \delta(F) + \text{Trace} (DF)$$

Sketch of the proof:

Suppose $P: H \to H$ is an orthogonal projector with finite rank. We know that :

$$\delta(PF) = \langle F, \widetilde{P} \rangle - \text{Trace} (D(PF)).$$

Let $P_n \uparrow Id$. We know that

$$\delta(P_n F) \longrightarrow \delta(F).$$

It is trivial that :

$$\langle F, \widetilde{P}_n \rangle \longrightarrow \overset{\circ}{\delta}(F)$$

(if $\overset{\circ}{\delta}(F)$ exists) and

$$\operatorname{Trace}(D(P_nF)) \longrightarrow \operatorname{Trace}(DF)$$

-Q.E.D.-

6 - Extensions and remarks - Localization

0

Now we shall consider the case where (E, H, μ) is the Wiener space. If $F \in \mathbb{D}^{2,1}$, then ∇F is a random variable with values in the Cameron-Martin space. Therefore, if $t \in [0, T]$ we can speak of the value of $\nabla F(\omega)$ at t, denoted $\nabla_t F(\omega)$. Analogously, time derivative of $\nabla F(\omega)$ at time t (defined for almost every t) makes sense. We shall denote it : $\nabla_t F(\omega)$. We have the equality :

$$\|\nabla F(\boldsymbol{\cdot})\|_{L^2(H)}^2 = \mathbb{E}(\int_0^t |\overset{\bullet}{\nabla}_t F(\omega)|^2 dt).$$

Lemma 1 : Let $F \in \mathbb{D}^{2,1}$. Then $1_{\{F=0\}} \stackrel{\bullet}{\nabla}_t F = 0$ almost everywhere on $[0,T] \times \Omega$.

For the proof see Nualart-Pardoux.

This results in a localization theorem : if F is null (almost everywhere) on a set, so is its derivative. The derivation is a "local operator".

Definition 1 : A random variable F will be said to belong to $\mathbb{D}_{loc}^{2,1}$ if there exist

• a sequence of measurable sets of $E, E_k \uparrow E$

and

• a sequence $(F_k) \subset \mathbb{D}^{2,1}$ such that $F_{|E_k} = F_{k|E_k}$ a.s. $\forall k \in \mathbb{N}$.

Thanks to the preceding lemma we can define the derivation operator for an element of $\mathbb{D}_{loc}^{2,1}$.

Definition 2: Let $F \in \mathbb{D}^{2,1}_{loc}$ localized by the sequence (E_k, F_k) . DF is the unique equivalence class of $dt \times dP$ a.e equal processes such that

$$DF_{|E_k} = DF_{k|E_k}, \quad \text{for all } k \text{ in } \mathbb{N}.$$

This generalized derivative has the usual properties of composition :

let $\varphi : \mathbb{R}^m \to \mathbb{R}$ of the class C^1 ; suppose $F = (F^1, ..., F^m)$ is a random vector whose components belong to $\mathbb{D}^{2,1}_{loc}$; then

$$\varphi(F) \in \mathbb{D}^{2,1}_{\mathrm{loc}}$$

and

$$\nabla \varphi(F) = \sum_{i=1}^{m} \frac{\partial \varphi}{\partial x_i} (F) \cdot DF^i.$$

In the same manner we define $(\text{Dom } \delta)_{loc}$ as follows: $F: E \longrightarrow H$ belongs to $(\text{Dom } \delta)_{loc}$ if there exists a sequence $E_k \uparrow E$, and a sequence $F_k: E \longrightarrow H$ such that $F_k \in (\text{Dom } \delta)$ for every k, such that

• $F = F_k$ on E_k • $\delta(F_k) = \delta(F_\ell)_{|F_k|}$ a.s if $k < \ell$;

we shall say that F is "localized" by (E_k, F_k) .

For sufficiently reasonable integrands on (Dom δ) Nualart-Pardoux have shown that δ is local.

Definition 3: Let $F \in (\text{Dom } \delta)_{\text{loc}}$ localized by (E_k, F_k) , $\delta(F)$ is defined as the unique equivalence class on random variables on E such that

$$\delta(F)_{|E_k} := \delta(F_k)_{|E_k}, \quad \text{for all } k \text{ in } \mathbb{N}.$$

(Note that $\delta(F)$ may depend on the localizing sequence).

We shall need another notion of stochastic derivatives and Skorokhod integrals for some functions not necessarily belonging to $\mathbb{D}^{2,1}$, nor Skorokhod integrable, introduced by Buckdahn :

Let $T: E \to E$ be a measurable mapping of the form :

$$x \rightsquigarrow x + Fx$$
 where $F \in \mathbb{D}^{2,1}(H)$.

Let $\xi \in \mathbb{D}^{2,1}$ and suppose that for every sequence of smooth random variables $(\xi_n) \in \mathbb{D}^{2,1}$ converging to ξ in $\mathbb{D}^{2,1}$, the following limit exists and is independent of the approximating sequence chosen :

$$\lim_{n \to \infty} \nabla \left(\xi_n \circ T \right)$$

where the limit is taken in probability.

Let us remark that $\xi_n \circ T$ belongs to $\mathbb{D}^{2,1}$ since the ξ_n are *smooth*.

The common limit of the above sequences is denoted by $\widetilde{\nabla}$ $(\xi \circ T)$.

Lemma 2: Suppose that $T(\mu) \ll \mu$, then the limit exists and we have, μ -almost surely:

$$\widetilde{\nabla} \left(\xi \circ T \right) = \left(I_H + (\nabla F)^* \right) \left((\nabla \xi) \circ T \right) = (I_H + \nabla F)^* \left((\nabla \xi) \circ T \right)$$

(where $()^*$ denotes the adjoint of the bounded operator).

Moreover, if $\xi \circ T \in \mathbb{D}^{2,1}$: $\widetilde{\nabla} (\xi \circ T) = \nabla(\xi \circ T)$.

Proof:

We have, since the (ξ_n) are smooth:

$$\nabla(\xi_n \circ T) = (I_H + \nabla F)^* ((\nabla \xi_n) \circ T).$$

Moreover, $\nabla \xi_n$ converges in probability, and since $T(\mu)$ is absolutely continuous with respect to μ , $(\nabla \xi_n) \circ T$ converges in probability, so does $\nabla (\xi_n \circ T)$.

It now remains to prove that the limit does not depend upon the approximating sequence (ξ_n) .

Let $\xi_n \longrightarrow \xi$ and $\eta_n \longrightarrow \xi$ in $\mathbb{D}^{2,1}$. Since the operator ∇ is closed we have :

$$\lim_{n} \nabla(\xi_n \circ T) = \lim_{n} \nabla(\eta_n \circ T).$$

Therefore, $\widetilde{\nabla}$ is well defined by what precedes. It is obvious that :

$$\widetilde{\nabla} = \nabla$$
 if $\xi \circ T \in \mathbb{D}^{2,1}$.

By duality, we can define a generalized Skorokhod integral of $\xi \circ T$, for $\xi \in D^{2,1}(H)$:

- Lemma 2 is proven.-

Definition : Let $(e_i)_{i \in \mathbb{N}}$ be a fixed orthonormal basis of H. We define

$$\widetilde{\delta}(\xi \circ T) := \sum_{i} (\langle \xi \circ T, e_i \rangle_H \ \widetilde{e}_i - \widetilde{\nabla}_{e_i} (\langle \xi \circ T, e_i \rangle_H),$$

if the limit of the right member is taken in probability.

($\widetilde{\nabla}_{e_i}$ denotes the generalized derivative in the e_i -direction introduced just above).

Lemma 3: Suppose T = I + F as above is such that $T(\mu) \ll \mu$. Then $\tilde{\delta}(\xi \circ T)$ exists and satisfies the following identity:

$$\left(\delta(\xi)\right) \circ T = \widetilde{\delta}(\xi \circ T) + \langle \xi \circ T, F \rangle_H + \text{Trace}\left((\nabla \xi) \circ T \bullet \nabla F\right) \quad \mu\text{-almost surely}.$$

Proof :

Let
$$\xi^N = \sum_{i=1}^N \langle \xi, e_i \rangle_H e_i$$
, then
 $\widetilde{\delta}(\xi^N \circ T) = \sum_{i=1}^N \langle \xi \circ T, e_i \rangle_H \widetilde{e}_i - \sum_{i=1}^N \widetilde{\nabla}_{e_i} \left(\langle \xi \circ T, e_i \rangle_H \right).$

But

$$\widetilde{e}_i \circ T = \widetilde{e}_i + \langle F, e_i \rangle_H \,,$$

therefore :

$$\delta(\xi^N \circ T) = \sum_{i=1}^N \left\{ \langle \xi \circ T, e_i \rangle_H \left[\widetilde{e}_i \circ T - \langle F, e_i \rangle_H \right] - \langle (I_H + \nabla F)^* \left(\nabla (\langle \xi, e_i \rangle_H) \right) \circ T, e_i \rangle_H \right\} \right\}$$

(by the preceding lemma)

$$=\sum_{i=1}^{N} \left\{ \langle \xi \widetilde{e}_{i}, e_{i} \rangle_{H} \circ T - \langle \xi \circ T, e_{i} \rangle_{H} \langle F, e_{i} \rangle_{H} - \langle (I_{H} + \nabla F)^{*} (\nabla (\langle \xi, e_{i} \rangle_{H})) \circ T, e_{i} \rangle_{H} \right.$$
$$= \sum_{i=1}^{N} \left[\langle \xi, e_{i} \rangle_{H} \ \widetilde{e}_{i} - \langle \nabla_{e_{i}} \xi, e_{i} \rangle_{H} \right] \circ T - \langle \xi^{N} \circ T, F \rangle_{H} - \operatorname{Trace} \left(\nabla F^{*}, (\nabla \xi^{N}) \circ T \right).$$

Now $\xi^N \longrightarrow \xi$ in $\mathbb{D}^{2,1}(H)$; then the right member of this last equality converges in $L^0(E,\mu)$. Hence the sum is convergent in $L^0(E,\mu)$ and

$$\sum_{i=1}^{\infty} \langle \xi \circ T, e_i \rangle_H \ \widetilde{e}_i - \widetilde{\nabla}_{e_i} \left(\langle \xi \circ T, e_i \rangle_H \right) \quad \text{is convergent in } L^0(E, \mu) \,.$$

- Lemma 3 is proven.-

CHAPTER TWO

Transformation of a Gaussian measure

Given an abstract Wiener space (H, E, μ) and $T: E \to E$ of the form :

$$Tx = x + F(x), \quad F: E \to H.$$

We shall examine when $T(\mu) \ll \mu$. We shall consider the following cases :

- F is linear continuous from E into H,

- F is regular (i.e., possesses stochastic derivatives).

We shall give some expressions for the Radon-Nikodym density $\frac{dT(\mu)}{d\mu}$.

In the following chapter we shall study a family of flows : $T_t = I + F_t$ where $F_t : E \to H$, $(t \in [0, 1])$ and shall study the work of Cruzeiro, Buckdahn and Ustunel-Zakai on this subject. We shall only give the statements of the results and from time to time sketch of the proofs.

1 - Preliminary results on equivalence and orthogonality of product measures

Let $(E_k, \mathcal{B}_k)_{k \in \mathbb{N}^*}$ be a sequence of measurable spaces and for every k, let μ_k and ν_k be two probabilities on (E_k, \mathcal{B}_k) such that $\mu_k \ll \nu_k$. Let us set $\rho_k = \frac{d\mu_k}{d\nu_k}$. Let us consider the product measures :

$$\mu=\prod_{k=1}^{\infty} \ \mu_k$$

and

$$\nu = \prod_{k=1}^{\infty} \nu_k$$

and let

$$\alpha_k = \int_{E_k} \sqrt{\rho_k(x_k)} \nu_k (dx_k).$$

These notations having been fixed we have the following result of Kakutani :

THEOREM 1: We have the dichotomy :

$$\mu \ll \nu$$
 or $\mu \perp \nu$.

a) $\mu \ll \nu \iff \prod \alpha_k$ converges; and in this case the density is equal to $\rho(x) = \prod_{1}^{\infty} \rho_k(x_k)$ (convergence in mean).

b) $\mu \perp \nu \iff \prod \alpha_n$ diverges to zero. (We cannot have divergence to infinity since $\alpha_k^2 \leq 1$).

Applications : $E_k = \mathbb{R}$ for every k

$$\nu_k(dx_k) = \frac{1}{\sigma_k \sqrt{2\pi}} \exp\left\{-\frac{(x_k - \gamma_k)^2}{2\sigma_k^2}\right\} dx_k$$
$$\mu_k(dx_k) = \frac{1}{\lambda_k \sqrt{2\pi}} \exp\left\{-\frac{(x_k - \beta_k)^2}{2\lambda_k^2}\right\} dx_k$$

Then

$$\rho_k(x_k) = \frac{\sigma_k}{\lambda_k} \exp\left\{-\frac{1}{2\sigma_k^2 \lambda_k^2} \left[(x_k - \beta_k)^2 \sigma_k^2 - (x_k - \gamma_k)^2 \lambda_k^2 \right] \right\}$$

and

$$\alpha_k = \int_{\mathrm{I\!R}} \sqrt{\rho_k(x_k)} \, d\nu_k(x_k) = \sqrt{\frac{2\lambda_k \sigma_k}{\lambda_k^2 + \sigma_k^2}} \, \exp\Big\{-\frac{(\beta_k - \gamma_k)^2}{4(\lambda_k^2 + \sigma_k^2)}\Big\}.$$

We now give some particular cases :

- Same covariance $(\lambda_k = \sigma_k \text{ for every } k)$. μ and ν are equivalent if and only if

$$\sum_{k} \frac{\left(\beta_{k} - \gamma_{k}^{2}\right)^{2}}{\sigma_{k}^{2}} < \infty$$

and the density is then equal to

$$\exp\left\{\sum_{k=1}^{\infty} \frac{x_k(\beta_k-\gamma_k)}{\sigma_k^2} - \frac{\beta_k^2-\gamma_k^2}{2\sigma_k^2}\right\}.$$

Otherwise, we have orthogonality of measures.

42

- Same mean $\beta_k = \gamma_k = 0$ for every k.

 μ and ν are equivalent if and only if :

$$\sum_{k=1}^{\infty} \frac{(\lambda_k - \sigma_k)^2}{\lambda_k \sigma_k} < \infty$$

and in this case the density is equal to :

$$\frac{d\mu}{d\nu}(x) = \lim_{n \to \infty} \prod_{k=1}^{n} \frac{\sigma_k}{\lambda_k} \exp\left\{-\frac{x_k^2}{2} \left(\frac{\sigma_k^2 - \lambda_k^2}{\sigma_k^2 \lambda_k^2}\right)\right\}.$$

If this condition is not satisfied we have orthogonality.

2 - Affine transformations of Gaussian measures

Now let (E, H, μ) be an abstract Wiener space. If (e_n) is an orthonormal basis of H, the random variables \tilde{e}_n are independent Gaussian variables on E, with mean zero and variance one. The law of the sequence (\tilde{e}_n) is therefore a product measure on $\mathbb{R}^{\mathbb{N}}$:

$$\gamma_{\mathbb{I}\mathbb{N}} = \bigotimes_{n=0}^{\infty} \ \gamma_n$$

where $\gamma_n = \gamma$ (Gaussian measure on \mathbb{R}) for every n. Now we have a measurable (defined almost everywhere) map θ of E into $\mathbb{R}^{\mathbb{N}}$:

$$x \rightsquigarrow \left(\widetilde{e}_n(x)\right)_n$$

If the e_n belong to E', the \tilde{e}_n are everywhere defined and θ is continuous from E into $\mathbb{R}^{\mathbb{N}}$.

It is clear now that the image of μ under θ is equal to $\gamma_{\mathbb{N}}$. We have $\theta(H) = \ell^2$ as we can see immediately (the $\tilde{e}_n(x)$ are defined in a unique way on H).

Proposition 1: Let $a \in E$ and $\tau_a(\mu)$ be the translate of μ by a. Then we have the dichotomy:

$$au_a(\mu) \sim \mu \text{ or } au_a(\mu) \perp \mu,$$

 $au_a(\mu) \sim \mu \text{ if and only if } a \in H \text{ and the density is equal to } \exp\{\widetilde{a}(\bullet) - \frac{1}{2} \|a\|_H^2\}.$

Proof:

 $\tau_a(\mu)$ is a Gaussian (non centered if $a \neq 0$) measure with the same covariance than μ . Let $(e_n) \subset E'$ (orthonormal in H). It suffices to prove the same result for $\theta(\mu)$ and $\theta(\tau_a(\mu))$. But $\theta(\tau_a(\mu))$ is the product of Gaussian measures on \mathbb{R} with variances one and mean $e_n(a)$. Therefore it suffices to apply the result of the previous paragraph.

-Q.E.D.-

Now let T = I + F be a linear continuous transform of E into E. Let us suppose that $F(E) \subset H$. In this case F is continuous for the topology of H by closed graph theorem.

Suppose moreover, that $T_{|H} = Id_H + F_{|H}$ is an *invertible operator*. Then $T: E \to E$ is also invertible and

$$T^{-1} = I - (T_{|H})^{-1} \circ F.$$

Proposition 2 : Suppose T = I + F with the above properties and that $F_{|_H}$ is nuclear. Then $T^{-1}(\mu)$ and μ are equivalent and

$$\frac{dT^{-1}(\mu)}{d\mu} (x) = \exp\left\{-(Fx, x)_H - \frac{1}{2} \|Fx\|_H^2\right\} |\det T|.$$

Proof:

Let us explain what this formula means. Indeed, $F_{|H}$ being nuclear, admits the decomposition : $F_{|H}(x) = \sum_{n} \lambda_n (x, e_n)_H f_n$, $(e_n, f_n \text{ orthonormal in } H)$ and we can define $\langle F(x), x \rangle_H$ on E by $\sum_{n} \lambda_n \tilde{e}_n(x) \tilde{f}_n(x)$, we set : det $(I + F) = \prod_{n} (1 + \lambda_n)$. (This has sense since $\sum_{n} |\lambda_n| < \infty$).

• Let us suppose first that F is symmetrical :

$$F(x) = \sum_{n} \lambda_{n}(x, e_{n})_{H} e_{n}$$

where e_n is an orthonormal basis composed of eigenvectors of F. Let $\theta: E \to \mathbb{R}^{\mathbb{N}}$ associated to these e_n . We have seen that : $\theta(\mu) = \gamma_{\mathbb{N}}$ (product measure). Now $\theta((I+F)^{-1}\mu)$ is the product of measures with densities :

$$\frac{1}{\sqrt{2\pi}} \left(1 + \lambda_n\right) \exp\left\{-\frac{1}{2} \left(1 + \lambda_n\right)^2 x_n^2\right\}.$$

We have

$$\frac{d((1+\lambda_n)^{-1} \tilde{e}_n(\mu))}{d(\tilde{e}_n(\mu)))} (x_n) = (1+\lambda_n) \exp\left\{-\lambda_n x_n^2 - \frac{1}{2} \lambda_n^2 x_n^2\right\}$$
$$\frac{d\left(\theta((I+F^{-1})(\mu))\right)}{d\theta(\mu)} (x) = \prod (1+\lambda_n) \exp\left\{-(Fx,x)_H - \frac{1}{2} \|Fx\|_H^2\right\}.$$

• Now let us consider the general case (F non necessarily symmetrical)

$$H \xrightarrow{i} E \xrightarrow{I+F} H \xrightarrow{i} E$$

 $(I + F) \circ i$ is an operator from H into H. There exists a unitary operator $U : H \to H$ "diagonalizing" $F \circ i$, therefore $(I + F) \circ i$. Let \tilde{U} its extension to $E \to E$. We apply the result for $\tilde{U}(I + F) \tilde{U}^{-1}$.

-Q.E.D.-

Now we shall consider the case where $F_{|H}$ is not nuclear.

We know that in any case $F_{|H}$ is Hilbert-Schmidt.

• Suppose at first that rank (F) is finite. Then the formula of Proposition 2 gives :

$$\prod_{i=1}^{n} (1+\lambda_{i}) \exp\left\{-\sum_{i=1}^{n} \lambda_{i} x_{i}^{2} - \frac{1}{2} \sum_{i=1}^{n} \lambda_{i}^{2} x_{i}^{2}\right\}$$
$$= \prod_{i=1}^{n} (1+\lambda_{i}) e^{-\lambda_{i}} \exp\left\{-\left(\sum_{i=1}^{n} \lambda_{i} x_{i}^{2} - \sum_{i=1}^{n} \lambda_{i} - \frac{1}{2} \|Fx\|_{H}^{2}\right\}.$$

• Now suppose F Hilbert-Schmidt with infinite rank :

$$\prod_i (1+\lambda_i) \ e^{-\lambda_i} \ \text{converges since} \ \sum_i \ |\lambda_i|^2 < \infty \,.$$

The limit is called the "Carleman determinant".

Now we can prove that

$$\lim_{n \to \infty} \exp\left\{-\left(\sum_{i=1}^n \lambda_i \ x_i^2 - \sum_{i=1}^n \ \lambda_i\right) - \frac{1}{2} \ \|Fx\|_H^2\right\} \text{ exists in } L^1(\mu) \text{ if } F \text{ is } H\text{-}S.$$

We denote it by :

$$\exp\left\{-\left["(Fx,x)_{H} - \text{Trace } F"] - \frac{1}{2} \|Fx\|_{H}^{2}\right\}\right\}$$

Therefore we have the following theorem :

THEOREM 2: Let $T: E \to E$ linear continuous, such that Tx = x + Fx with $F(E) \subset H$. Then $F_{|_H}$ defines a Hilbert-Schmidt operator from H into H. Suppose that $T_{|_H}$ is invertible then $T: E \to E$ is invertible. Moreover, $T^{-1}(\mu)$ is absolutely continuous with respect to μ and we have

$$\frac{d(T^{-1}(\mu))}{d\mu} (x) = \widetilde{\Delta}(I+F) \exp\left\{-\left["(Fx,x)_H - \text{Trace } F"] - \frac{1}{2} \|Fx\|_H^2\right\}\right\}$$

with

$$\widetilde{\Delta}(I+F) = \prod_{1}^{\infty} (1+\lambda_i) \ e^{-\lambda_i},$$

the λ_i being the eigenvalues of F.

We have seen the affine case.

Now we may give the result for the general case announced in the beginning.

THEOREM 3: Let $F \in \mathbb{D}^{2,1}(H)$. Suppose that (I + F) is invertible and that for every $x \in E$, the operator $I_H + \nabla F(x)$ from H to H is invertible, then $(I + F)^{-1}(\mu)$ is absolutely continuous with respect to μ and we have :

$$\frac{d((I+F)^{-1}\mu)}{d\mu}(x) = \tilde{\Delta} \left(I_H + \nabla F(x) \right) \exp \left\{ -\delta(F)(x) - \frac{1}{2} \|Fx\|_H^2 \right\}.$$

46

CHAPTER THREE

Transformation of Gaussian measures under anticipative flows

Let (Ω, H, P) be an abstract Wiener space and let T be an invertible transformation of Ω into Ω (the only interesting case will be of the form : T := Id + F with $F \in \mathbb{D}^{2,1}(H)$).

Definition : A family of transformations $(T_t)_{t \in [0,1]}$ from Ω to Ω will be called an "interpolation" of the invertible transformation T if

- a) $T_0 = Id$, $T_1 = T$,
- b) each T_t is invertible,

c) for each ω , $t \rightsquigarrow T_t \omega$ and $t \rightsquigarrow T_t^{-1} \omega$ are strongly continuous. Moreover, if

d) for each ω , $t \rightsquigarrow T_t \omega$ and $t \rightsquigarrow T_t^{-1} \omega$ are strongly continuously differentiable, the interpolation will be said to be "smooth".

Example 1 : $T_t(\omega) = \omega + tA(\omega)$ where A is a function from Ω to H, such that

 $\omega \rightsquigarrow \omega + tA(\omega)$ is invertible for every t.

Example 2: Suppose $A : \Omega \to H$ is continuous and suppose that we have defined a family of transformations (T_t) from Ω into Ω by :

$$T_t \omega = \omega + \int_0^t A(T_s \omega) \, ds$$
 (time homogeneous case)
i.e. $\begin{vmatrix} \frac{dT_t}{dt} & (\omega) &= A(T_t \omega) \\ T_0(\omega) &= \omega \end{vmatrix}$

we have then :

$$\frac{dT_t}{dt}\left(T_t^{-1}(\omega)\right) = A(\omega).$$

Example 3 : $T_t(\omega) = \omega + \int_0^t \sum (s, T_s(\omega)) ds.$

If $\sum (r, \omega)$ is **continuous** on $[0, 1] \times \Omega$ into Ω or into H and satisfies a global Lipschitz condition :

$$|\sum(t,\omega_1) - \sum(t,\omega_2)| \le L \|\omega_1 - \omega_2\|_{\Omega}$$

We can consider $T_t(\omega)$ as the solution of the ordinary differential equation

$$\begin{cases} \frac{dT_t}{dt} (\omega) &= \sum (t, T_t(\omega)) \\ T_0 (\omega) &= \omega \end{cases}$$

on the Banach space Ω .

If for every $t \in [0,1]$, $\sum (t, \cdot)$ is Fréchet differentiable, with Fréchet differential denoted by $\partial \sum (t, \omega)$, and if we assume that $\partial \sum (t, \omega)$ is bounded continuous on $[0, 1] \times \Omega$, then the equation

$$T_t\omega = \omega + \int_0^t \sum (r, T_r(\omega)) dr$$

has a unique solution.

Moreover, $\omega \rightsquigarrow T_t(\omega)$ is Fréchet differentiable and $\partial T_t(\omega)$ is continuous, invertible on $[0,1] \times \Omega$, and satisfies the differential equation :

$$\frac{d}{dt} (\partial T_t \omega) = \left(\partial \sum_{t} (t, \bullet) \circ T_t(\omega) \right) \bullet \partial T_t(\omega) \,.$$

Its inverse $\partial^{-1}T_t\omega$ satisfies :

$$\frac{d}{dt} \left(\partial^{-1} T_t \omega \right) = -\partial^{-1} T_t(\omega) \bullet \left(\partial \sum (t, \cdot) \circ T_t(\omega) \right).$$

Consequently, by the global inverse theorem, $T_t(\omega)$ is a C_1 -diffeomorphism. Therefore, we have an interpolation of T defined by

$$T(\omega) = \omega + \int_0^1 \sum (r, T_r \omega) dr.$$

Later on we shall come back to this example. Now let us return to the general situation.

48

THEOREM 1 : Let T be a transformation from Ω to Ω and $(T_t, t \in [0, 1])$ be an interpolation of T. Let us assume moreover that

(c) $\frac{-\iota}{dt}$ as a function from $[0,1] \times \Omega$ into H is almost surely continuous in (t,ω) (for $dt \otimes dP$) and $\nabla T_t^{-1}(\omega)$ will be assumed to possess a continuous extension $[0,1] \times \Omega$,

(d)
$$\frac{dT_s^{-1}}{ds} \circ T_s \in \mathbb{D}^{2,1}(H).$$

Then

$$X_t(\omega) = \exp\left\{-\int_0^t \left(\delta \left[\frac{dT_s^{-1}}{ds} \circ T_s\right]\right) \circ T_s^{-1}(\omega) \ ds\right\}$$
(1)

This implies that the measures $T_t(P), T_t^{-1}(P)$ and P are equivalent. Moreover

$$X_{t} = \exp\left\{-\int_{0}^{t} \tilde{\delta} \left[\frac{dG_{s}}{ds}\right] ds -\frac{1}{2} \langle G_{t}, G_{t} \rangle_{H} -\int_{0}^{t} \operatorname{Trace}\left[\left(\nabla\left[\frac{dG_{s}}{ds} \circ T_{s}\right] \circ T_{s}^{-1}\right) \bullet \nabla G_{s}\right] ds\right\}$$
(2)

where $\tilde{\delta}$ was defined precedently by :

$$\tilde{\delta} \ (\xi \circ T) = (\delta \xi) \circ T - \langle \xi \circ T, F \rangle_H - \text{Trace} \left((\nabla \xi) \circ T \bullet \nabla F \right).$$

Moreover, if $\frac{dG_s}{ds}$ and G_s are in $\mathbb{D}^{2,1}(H)$, then the formula (2) becomes :

$$X_{t} = \exp\left\{-\delta(G_{t}) - \frac{1}{2}\langle G_{t}, G_{t} \rangle_{H} - \int_{0}^{t} \operatorname{Trace}\left[\left(\nabla\left[\frac{dG_{s}}{ds} \circ T_{s}\right] \circ T_{s}^{-1}\right) \bullet \nabla G_{s}\right] ds\right\}.$$
(3)

Proof of (1):

We have :

$$0 = \frac{1}{\varepsilon} \left[T_{t+\varepsilon}^{-1} \circ T_{t+\varepsilon} - T_t^{-1} \circ T_t \right]$$
$$= \frac{1}{\varepsilon} \left[T_{t+\varepsilon}^{-1} \circ T_{t+\varepsilon} - T_{t+\varepsilon}^{-1} \circ T_t \right] + \frac{1}{\varepsilon} \left[T_{t+\varepsilon}^{-1} \circ T_t - T_t^{-1} \circ T_t \right].$$

Therefore by (c)

$$\left[(\nabla T_t^{-1}) \circ T_t(\omega) \right] \cdot \frac{dT_t}{dt}(\omega) + \frac{dT_t^{-1}}{dt} \circ T_t \omega = 0$$
(4)

Let now $a: \Omega \to \mathbb{R}$ smooth and let $h \in H$. By (d) we have :

$$\begin{split} \langle (\nabla a) \circ T_t(\omega), h \rangle_H &= \lim_{\varepsilon \longrightarrow 0} \frac{\partial}{\partial \varepsilon} a \left(T_t \omega + \varepsilon h \right) \\ &= \lim_{\varepsilon \longrightarrow 0} \frac{\partial}{\partial \varepsilon} \left[\left(a \circ T_t \right) \left(T_t^{-1} (T_t \omega + \varepsilon h) \right) \right] \\ &= \lim_{\varepsilon \longrightarrow 0} \frac{\partial}{\partial \varepsilon} \left[\left(a \circ T_t \right) \left(\omega + \varepsilon (\nabla T_t^{-1}) \circ (T_t \omega) \cdot h + o(\varepsilon) \right] \\ &= \langle \nabla (a \circ T_t), \ (\nabla T_t^{-1}) \circ T_t(\omega) \cdot h \rangle_H \,. \end{split}$$

Now if we set $h = \frac{d}{dt} T_t(\omega)$, comparing with (4), we obtain :

$$\langle (\nabla a) \circ T_t \omega, \frac{d}{dt} T_t \omega \rangle_H = - \langle \nabla (a \circ T_t)(\omega), \frac{dT_t^{-1}}{dt} \circ T_t(\omega) \rangle_H$$

But the left-hand member of this equality is equal to $\frac{d}{dt} (a \circ T_t)(\omega)$. Therefore we obtain :

$$\mathbb{E}\{a \circ T_t \omega - a(\omega)\} = \mathbb{E}\left(\int_0^t \frac{d}{ds} (a \circ T_s \omega) ds\right)$$
$$= -\mathbb{E}\left(\int_0^t \langle \nabla (a \circ T_s) (\omega), \frac{dT_s^{-1}}{ds} \circ T_s \omega \rangle ds\right).$$

But from condition (d) , $\left(\frac{dT_s^{-1}}{ds} \circ T_s \in \mathbb{D}^{2,1}(H)\right)$, and integrating by parts we obtain :

$$\mathbb{E}\{a \circ T_t(\omega) - a(\omega)\} = -\int_0^t \mathbb{E}\left\{(a \circ T_s\omega) \ \delta\left[\frac{dT_s^{-1}}{ds} \circ T_s\right](\omega)\right\} \ ds$$

50

 and

$$\mathbb{E} \{a(\omega).(X_t(\omega)-1)\} = -\mathbb{E} \left(\int_0^t a(\omega) X_s(\omega) \left(\delta \left[\frac{dT_s^{-1}}{ds} \circ T_s \right] \right) \circ T_s^{-1} \omega \ ds \right)$$

Since this last inequality is true for smooth functions we have :

$$X_t(\omega) = 1 - \int_0^t X_s(\omega) \left(\delta \left[\frac{dT_s^{-1}}{ds} \circ T_s \right] \right) \circ T_s^{-1} \omega \ ds$$

Finally, since X_t is *P*-almost surely positive, $T_t P$ and *P* are equivalent.

On the other hand, if $a: \Omega \to \mathbb{R}$ is smooth, then :

$$\mathbb{E} \{ a \circ T_t^{-1} X_t \} = \mathbb{E}a.$$

Hence if B is a Borelian subset of Ω , then

$$P(B) = 0 \iff \mathbb{E}\{1_B \circ T_t^{-1} X_t\} = 0 \iff 1_B \circ T_t^{-1} = 0, \text{ a.s.}$$

Therefore, $T_t^{-1}(P)$ and P are equivalent.

Proof of (2):

We start from

$$(\delta\xi) \circ T = \tilde{\delta} \ (\xi \circ T) + \langle \xi \circ T, F \rangle_{H} + \text{Trace} \ ((\nabla\xi) \circ T \bullet \nabla F)$$

with

$$\xi = \frac{dT_s^{-1}}{ds} \circ T_s, \quad T = T_s^{-1}, \quad F = T - Id = G_s$$

and

$$\frac{dG_s}{ds} = \frac{dT_s^{-1}}{ds}.$$

Then

$$\delta\big[\frac{dT_s^{-1}}{ds} \circ T_s\big] \circ T_s^{-1} = \tilde{\delta}\Big(\frac{dG_s}{ds}\Big) + \langle \frac{dG_s}{ds}, G_s \rangle + \operatorname{Trace}\left(\Big(\nabla \left[\frac{dG_s}{ds} \circ T_s\right]\Big) \circ T_s^{-1} \bullet \nabla G_s\right)$$

and we integrate from 0 to t.

Proof of (3):

It is immediate from (2) since $\tilde{\delta} = \delta$ under this hypothesis.

We have expressed the density X_s in terms of $\frac{dT_s^{-1}}{dt}$. (The next result will give an expression of X_t in terms of $\frac{dT_s}{ds}$).

-Q.E.D.-

Corollary : Under the assumptions and conditions of the theorem 1 let us replace T, T_t, T_s and X_t by $T^{-1}, T_t^{-1}, T_s^{-1}, \frac{dT_t^{-1}(P)}{dP} = Y_t$. Then we have :

$$\begin{aligned} X_t(\omega) &= \frac{dT_t(P)}{dP} (\omega) \\ &= \exp\left\{\int_0^t \left(\delta\left[\frac{dT_s}{ds} \circ T_s^{-1}(\bullet)\right]\right) \circ T_s T_t^{-1}(\omega) \ ds\right\} \end{aligned}$$

and

$$\begin{split} X_t(\omega) &= \exp\Big\{-\delta(G_t)(\omega) - \frac{1}{2} \langle G_t, G_t \rangle_H(\omega) \\ &+ \int_0^t \operatorname{Trace} \Big[\Big(\nabla \Big[\frac{dT_s}{ds} \circ T_s^{-1}\Big] \circ T_s T_t^{-1}(\omega)\Big) \bullet \nabla \Big(G_t - G_s \ (T_s T_t^{-1})\Big)(\omega)\Big] \ ds \Big\}. \end{split}$$

Proof:

By Theorem 1:

$$Y_t(\omega) = \exp\left\{-\int_0^t \left(\delta \left[\frac{dT_s}{ds} \circ T_s^{-1}\right]\right) \circ T_s(\omega) \ ds\right\}.$$
 (A)

On the other hand, if a is a smooth functional :

$$\mathbb{E}\left\{a(\omega) \ Y_t^{-1} \ (T_t^{-1}\omega)\right\} = \mathbb{E}\left\{a(T_tT_t^{-1}\omega) \ Y_t^{-1} \ (T_t^{-1}(\omega))\right\}$$
$$= \mathbb{E}\left\{a(T_t(\omega)) \ Y_t^{-1}(\omega) \ Y_t(\omega)\right\}$$
$$= \mathbb{E}\left\{a(\omega) \ X_t(\omega)\right\}.$$

Therefore :

$$X_t(\omega) = Y_t^{-1} \left(T_t^{-1}(\omega) \right) = \exp\left\{ \int_0^t \left(\delta \left[\frac{dT_s}{ds} \circ T_s^{-1}(\bullet) \right] \right) \circ T_s \circ T_t^{-1}(\omega) \ ds \right\},$$

- which proves the first formula.-

To prove the second formula let us start from

$$T_s\omega=\omega+F_s(\omega)$$

which implies

$$T_s T_t^{-1} \omega = T_t^{-1} \omega + F_s \ (T_t^{-1} \omega),$$

and if s = t

$$\omega = T_t^{-1}\omega + F_t \left(T_t^{-1}\omega \right).$$

Therefore

$$T_s T_t^{-1} \omega = \omega + F_s \ (T_t^{-1} \omega) - F_t \ (T_t^{-1} \omega).$$

.

Now

$$G_t(\omega) = T_t^{-1}(\omega) - \omega = -F_t \ (T_t^{-1}\omega).$$

Therefore :

$$T_s T_t^{-1} \omega = \omega + G_t(\omega) - G_s \ (T_s T_t^{-1} \omega).$$

In the formula

$$X_t(\omega) = \exp\left\{\int_0^t \left(\delta\left[\frac{dT_s}{ds} \circ T_s^{-1}\right]\right) \circ T_s T_t^{-1} \omega \ ds\right\},\,$$

let us apply the formula given δ in terms of $\tilde{\delta}$. We obtain :

$$\begin{split} X_t(\omega) &= \exp\left\{ \int_0^t \left(\tilde{\delta} \left[\frac{dT_s}{ds} \circ T_t^{-1} \right](\omega) \right. \\ &+ \langle \frac{dT_s}{ds} \circ T_t^{-1}(\omega), \ G_t(\omega) - G_s(T_s T_t^{-1} \omega) \rangle_H \right. \\ &+ \operatorname{Trace} \left[\left(\nabla \left[\frac{dT_s}{ds} \circ T_s^{-1} \right] \circ T_s T_t^{-1}(\omega) \right) \bullet \nabla \left(G_t - G_s(T_s T_t^{-1}) \right)(\omega) \right] \right) \, ds \right\} \end{split}$$

Now we integrate with respect to s, by using :

$$\frac{d}{ds}(T_s \circ T_t^{-1}(\omega)) = -\frac{d}{ds}(G_s(T_s T_t^{-1}\omega)) = \frac{d}{ds}(G_t(\omega) - G_s(T_s T_t^{-1}\omega)).$$

- We obtain the second formula.-

Now we give an integral equation satisfied by X_t .

THEOREM 2: Let $T: \Omega \to \Omega$ and $T_t: \Omega \to \Omega$ ($t \in [0,1]$) be an interpolation of T. Assume that for each $t \in [0,1]$, $T_t(P) \ll P$ and that $X_s \left[\frac{dT_s}{ds} \circ T_s^{-1}\right] \in \mathbb{D}_{loc}^{2,1}(H)$ (this condition is satisfied if $\frac{dT_s}{ds} \circ T_s^{-1} \in \mathbb{D}^{2,1}(H)$ and $X_s \in \mathbb{D}_{loc}^{2,1}$), then X_t satisfies :

$$X_t = 1 + \int_0^t \delta \left[X_s \ \frac{dT_s}{ds} \circ T_s^{-1} \right] \ ds \, .$$

Proof:

Let a be a smooth functional. Then

$$\begin{split} \mathbf{E}\{X_t(\omega)a(\omega)\} &= \mathbf{E}\left\{a(T_t(\omega))\right\} \\ &= \mathbf{E}\left\{a(\omega) + \int_0^t \frac{da(T_s(\omega))}{ds} ds\right\} \\ &= \mathbf{E}\left\{a(\omega) + \int_0^t \langle (\nabla a) \circ T_s \omega, \frac{d}{ds} T_s(\omega) \rangle ds\right\} \\ &= \mathbf{E}\left\{a(\omega)\right\} + \int_0^t \mathbf{E}\left\{X_s(\omega) \langle \nabla(a)(\omega), \left[\frac{dT_s}{ds} \circ T_s^{-1}(\omega)\right] \rangle\right\} ds \\ &= \mathbf{E}\left\{a(\omega)\right\} + \int_0^t \mathbf{E}\left\{a(\omega) \delta\left[X_s \frac{dT_s}{ds} \circ T_s^{-1}\right](\omega)\right\} ds \\ &= \mathbf{E}\left\{a(\omega)\right\} + \int_0^t \mathbf{E}\left\{a(\omega) \delta\left[X_s \frac{dT_s}{ds} \circ T_s^{-1}\right](\omega)\right\} ds \\ &- Q.E.D. - \end{split}$$

Applications of these formulas.

• In the example (1) : $T_t(\omega) = \omega + t A(\omega)$,

$$X_t(\omega) = \exp\left\{\int_0^t \left(\delta\left[A(T_s^{-1}(\bullet))\right]\right) \circ T_s T_t^{-1}(\omega) \ ds\right\}$$

(this result was obtained by Bell).

• In the example (2) : $T_t(\omega) = \omega + \int_0^t A(T_s(\omega)) ds$ $\frac{dT_s}{ds} (T_s^{-1}(\omega)) = A(\omega)$

and

$$X_t(\omega) = \exp\left\{\int_0^t \left(\delta(A)\right) \circ T_s T_t^{-1}(\omega) \ ds\right\}.$$

• We shall now study the example three :

$$T_t(\omega) = \omega + \int_0^t \sum (r, T_r(\omega)) dr.$$
 (B)

We have given some hypotheses insuring that $T_t \omega$ is a solution of the ODE with values in the Banach space Ω

$$egin{array}{ll} \displaystyle rac{dT_t}{dt} \left(\omega
ight) &= \sum ig(t,T_t(\omega)ig) \ T_0(\omega) &= \omega \end{array}$$

and that $\omega \rightsquigarrow T_t(\omega)$ and $\omega \implies T_t^{-1}(\omega)$ are Fréchet differentiable (in ω). Then :

$$I_{H} + \nabla \int_{0}^{t} \sum(s, T_{s}\omega) \ ds$$

is invertible and satisfies the hypotheses of Ramer's theorem

As a consequence the probabilities

$$T_t P$$
, P and $T_t^{-1} P$ are equivalent.

Now in (B) we replace ω by $T_s^{-1}\omega$:

$$T_t T_s^{-1}(\omega) = T_s^{-1}(\omega) + \int_0^t \sum (r, T_r T_s^{-1}(\omega)) dr.$$

Setting : $T_tT_s^{-1}(\omega) = \varphi_{s,t}(\omega)$ and $T_sT_t^{-1}(\omega) = \psi_{s,t}(\omega), \ t \ge s$, we have :

$$\psi_{s,t} \circ \varphi_{s,t} = \varphi_{s,t} \circ \psi_{s,t} = Id$$

and :

$$\varphi_{s,t}(\omega) = \omega + \int_s^t \sum (r, \varphi_{s,r}(\omega)) dr$$
$$\psi_{s,t}(\omega) = \omega - \int_s^t \sum (r, \psi_{r,t}(\omega)) dr$$

Note that $\varphi_{(1-s)t,t}$, $s \in [0,1]$ is, for t fixed, an interpolation of T_t and naturally $(T_t)_{t \in [0,1]}$ is an interpolation of $T_1 : \varphi_{s,t}$ is a "two-parameter" interpolation of T.

• Now we shall specialize the example in the case $\Omega = C_0[0, 1]$, with the Wiener measure and we shall use the following notations in this case :

If U, U_1 and U_2 are random functions with values in H; if H is the Cameron-Martin space, then

$$U(\omega) (\bullet) = \int_0^{\bullet} \dot{u}(\theta, \omega) \, d\theta$$
$$\delta(U) = \int_0^1 \dot{u} (\theta, \omega) \, \delta_{\theta}(W)$$
$$\langle U_1, U_2 \rangle_H = \int_0^1 \dot{u}_1 (\theta, \omega) \, \dot{u}_2 (\theta, \omega) \, d\theta \, .$$

But if H is the $L^2[0,1]$ space

$$U(\omega) (\bullet) = u(\bullet, \omega)$$

$$\delta U = \int_0^1 u(\theta, \omega) \,\delta_\theta(W)$$

$$\langle U_1, U_2 \rangle_H = \int_0^1 u_1(\theta, \omega) \,u_2(\theta, \omega) \,d\theta$$

$$(T_t\omega)(\bullet) = \omega(\bullet) + \int_0^t \rho(r,\bullet) \ \sigma(r,T_r\omega) \ dr \tag{C}$$

where ρ is a smooth function on $[0,1]^2$ and $\sigma : [0,1] \times \Omega \to \mathbb{R}$ is assumed to satisfy Lipschitzian and differentiability conditions.

In terms of $\varphi_{s,t}$ and $\psi_{s,t}$, $(s \leq t)$ we have :

$$\varphi_{s,t}(\omega) (\bullet) = \omega(\bullet) + \int_s^t \rho(r, \bullet) \ \sigma(r, \varphi_{s,r}(\omega)) \ dr$$
$$\psi_{s,t}(\omega) (\bullet) = \omega(\bullet) - \int_s^t \rho(r, \bullet) \ \sigma(r, \psi_{r,t}(\omega)) \ dr.$$

We consider these equations as ODE in Banach space (the first in t with s fixed; the second in s for t fixed), we have existence and unicity of solutions with

$$\varphi_{s,s}(\omega) = \omega, \ \psi_{t,t}(\omega) = \omega \text{ and } \varphi_{s,t} \circ \psi_{s,t}(\omega) = \omega.$$

Then $\psi_{s,t}(\omega)$ and $\varphi_{s,t}(\omega)$ are Fréchet differentiable in $\omega \in \mathcal{C}_0([0,1])$.

Consequently, $\partial \varphi_{s,t}$ and $\partial \psi_{s,t}$ restricted to H are invertible, and by Ramer's theorem: $\varphi_{s,t}(P)$, $\psi_{s,t}(P)$ and P are equivalent. Set

$$L_{s,t}(\omega) = \frac{d\varphi_{s,t}(P)}{dP}$$

and

$$\Lambda_{s,t}=\frac{d\psi_{s,t}(P)}{dP}\,.$$

Now let us fix t in the equation :

$$T_t\omega(\bullet) = \omega(\bullet) + \int_0^t \rho(r,\bullet) \ \sigma(r,T_r\omega) \ dr \ .$$

Let $s = t - \lambda$ and $\lambda \in [0, t]$ be the interpolation parameters. Now let us recall that (cf (3))

$$X_{t} = \exp\left\{-\delta(G_{t}) - \frac{1}{2} \langle G_{t}, G_{t} \rangle_{H} - \int_{0}^{t} \operatorname{Trace}\left(\nabla\left[\frac{dG_{s}}{ds} \circ T_{s}\right] \circ T_{s}^{-1} \bullet \nabla G_{s}\right) ds\right\}$$
(D)

where $G_t = T_t^{-1} - Id$, and apply the result for T_t satisfying the relation :

$$T_t\omega (\bullet) = \omega(\bullet) + \int_0^t \rho(r, \bullet) \ \sigma(r, T_r\omega) \ dr$$

Then we obtain an expression for X_t :

$$\begin{split} X_t &= \exp\Big\{\int_0^1 \Big[\int_0^t \frac{\partial\rho}{\partial\theta} \left(r,\theta\right) \,\sigma(r,\psi_{0,r})dr\Big]\delta_\theta(W) \\ &\quad -\frac{1}{2}\int_0^1 \Big[\int_0^t \frac{\partial\rho(r,\theta)}{\partial\theta} \,\sigma(r,\psi_{0,r}) \,dr\Big]^2 \,d\theta \\ &\quad -\int_0^t \int_0^t \int_0^t \Big[\int_0^\lambda \frac{\partial\rho(r,\eta)}{\partial\eta} \,D_\theta \,\sigma(r,\psi_{0,r}) \,dr\Big] \circ \frac{\partial\rho(\lambda,\theta)}{\partial\theta} \,\left(D_\eta \,\sigma(\lambda, \bullet)\right) \circ \psi_{0,\lambda} \,d\lambda \,d\theta \,d\eta\Big\}. \end{split}$$

We can obtain another formula for the Radon-Nikodym density using the relation :

$$\delta(aU) = a\delta U - \langle \nabla a, U \rangle_H$$

in the expression :

$$X_t(\omega) = \exp\left\{\int_0^t \left(\delta\left[\frac{dT_s}{ds} \circ T_s^{-1}\right]\right) \circ T_s T_t^{-1}(\omega) \ ds\right\}.$$

We then obtain :

$$\begin{split} L_{s,t} &= \exp\bigg\{\int_{s}^{t} \sigma(r,\psi_{r,t}) \Big[\delta\rho(r,\bullet) - \int_{s}^{r} \sigma(u,\psi_{u,t}) \langle \rho(r,\bullet), \ \rho(u,\bullet) \rangle_{H} \ du \Big] \ dr \\ &- \int_{s}^{t} \langle (\nabla\sigma)(r,\psi_{r,t}), \rho(r,\bullet) \rangle_{H} \ dr \bigg\} \,. \end{split}$$

REFERENCES

BUCKDAHN, R., Anticipative Girsanov transformations and Skorokhod stochastic differential equations. Memoirs of the A.M.S. n° :533, 1994.

CRUZEIRO, A.B., Equations differentielles sur l'espace de Wiener et formules de Cameron-Martin non-linéaires. J.F.A., 54, pp.206-227, 1983.

NUALART, D., Noncausal stochastic integrals and calculus. L.N.M., 1516, pp.80-129, 1988.

NUALART, D. and PARDOUX, E., Stochastic calculus with anticipating integrands. Probability Theory and Related Fields. 78, pp.535-581, 1988.

NUALART, D. and ZAKAI, M., On the relation between the Stratonovich and Ogawa integrals. Ann.Proba. 17, pp.1536-1540, 1989.

USTUNEL, A.S. and ZAKAI, M., Transformation of Wiener measure under anticipative flows. Probability Theory and Related Fields 93, pp. 91-136, 1992.