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Introduction

We shall be, in our lecture, mainly concerned by some particular cases of the following
problem :

Let (X, F, ) be a measure space and T : X ~ X measurable. We denote by T( )
or  o T-1 the image of p by T :

T(p) (A) = /. o (A) _ ~ VA 

When does T(p) G ~. and how to compute the density?

Example 1 : Let X = IRn,  = An (the Lebesgue measure) and T : X ~ X a diffeomor-

phism. Then from the formula

f = ~ f(y)dy, .

we conclude that T(03BBn) is absolutely continuous with respect to an and

(dy) = |det T’(T-1y)|-1dy = !det (T-1)’(y)|dy.

Example 2 : Let (SZ,.~’,P) be the classical Wiener space, Q = Go((0,1~),.~ the Borel

03C3-field, P the Wiener measure. Let u : : [0, Ij x S2 -j IR, be a measurable and adapted

stochastic process such that /  oo almost surely, and let T : 03A9 ~ Q be defined

by :

= wt + / ds.

Girsanov has proven that

On the other hand, let

03BE = exp{-10 utd03C9t - 1 2 10 u2t(03C9) dt}
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then, if IE(03BE) = 1. (Tw)t is a Brownian motion with respect to (H,.F,Q), where dQ dP = 03BE.
That is Q o T-1 ==P. .

(This fact was first proven by means of the Itô-calculus, but as we shall see, we can obtain
this by analytic methods).

This has an application in Statistical Communication Theory :

Suppose we are receiving a signal corrupted by noise, and we wish to determine if
there is indeed a signal or if we are just receiving noise.
If is the received signal, the noise and s(t) the emitted signal : :

~)=~)+~) (A)

In general, we make an hypothesis on the noise : it is a white noise.

The "integrated~ version of (A) is

X(t) = t0 s(u) du + Wt = St + Wt (A’)

(W is the standard Wiener process, X(t) ck is the cumulative received signal).

Now we ask the question : is there a signal corrupted by noise, or is there just a noise

(~)=0, Vt)?
The hypotheses are : :

H0 : Xt = Wt .

H1 : Xt = t0 s(u) du+ Wt.

We consider the likelihood ratio

and we fix a threshold level for the type I-error :

if : d w d x (03C9)  A we reject (H0)

if : d w d x (03C9) ~ 03BB we accept (H0).
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Some general considerations and examples.

If P « Q, then T(P) G T(Q). (a)

Therefore, we do not lose very much if we suppose that P and Q are probabilities.

In the case where Q is a probability, we can have an expression of dT(P) dT(Q) as conditional

mathematical expectation.

Remark : From (a) we see that, if there exists a probability Q such that

P « Q and T(Q) = P, then T(P) G P.

The converse is true if moreover > 0. (The measures are equivalent). Therefore

the following properties are equivalent :

(z) : T(P) ^’ P,

(ii) : : 3Q - P such that T(Q) = P.

Let us now consider an example which allows us to guess the situation in infinite

dimensional space.

Let SZ = IRn and P = In the canonical Gaussian measure with density :

1 (203C0)n/2 exp (- ~x~2 2)

and let T : IRn ~ IRn be a diffeomorphism, then

IRn f(y)T(03B3n)(dy) _ f(Tx) 03B3n(dx)

= 1 (203C0)n/2 IRn f(Tx) exp l 1 dx

~ (2~),~~2 ~~n exp (- 2 dx

= 1 (203C0)n/2 IRn f(y) |det T’(T-1y)| eXp( B2 1 - 1 2 1y~2) exp(-~y~2)dy.
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Therefore :

DT(03B3n) d03B3n (y) = 
1 |det T’(T-1)y)

1 
exp (i ~y~2 - 1 ~T- 1y~2)

= |det (T-1)’(y)| eXp B2 
Now if we write :

T-1 = (I + S) with S self adjoint,

then :

(T-1)’(y) = I + S’(y)

and we obtain :

d(I + ~) ’(’Y~) (~) _ Idet (I + S’~y))) ° (B)

This can be written as :

|det (I + S’(y)| exp (-Trace S’(y)) exp {-(Sy,y)IRn + Trace S’(y) - 2 >

where det (I + S’(y)~ exp (- Trace S’(y)) is the Carleman determinant.

General remark : If T = Id(SZ), it is clear that TP = P for every P. The idea is to

perturb the identity operator.

The problem is :

"what does the word perturbation mean ?"
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CHAPTER ONE

Anticipative stochastic integral

1 - Gaussian measures on Banach spaces

Let E be a (real) separable Banach space, E’ its dual. A (Borelian) probability ~
on E is said to be "Gaussian centered" if for every ~’ E E’, (., ~~)E,E~ = z’(.) is a

Gaussian centered (real) variable (eventually degenerated) under ~c. All what we shall say
is true whatever be the dimension of E (finite or infinite).

If x’ e E’ we define A : : E’ -~ E by

Ax’ == J E d (x),

(Bochner integral of a vector function). It is the barycenter of the measure (., x’~d .

A is injective if Supp p = E .

Let a; E A(E’) so x = A(u’) and let y E A(E’) so y = A(v’) , we shall put on

A(E’) C E the following scalar product :

(it does not depend on u’ and v’).

A : : E’ -> E is continuous. (Since ~ ~~~~~Zd~.(~)  oo by Fernique’s theorem).

Therefore, if z denotes the canonical injection of A(E’) into E :

i : (A{E’)), ~~.~~~,) - is continuous.

Actually :

E

 sup ( !(~~)~(a:))~ (~ ~ ~~J~~ x) ~2 dl~~~)) zE ~ ~E E 
~ (~ ~~~ ~ ~)~2 dw~~)) ~ ( f ~~~~~2 d/~)~; ~
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hence,

(~Ax’~~E  C ~~Ax’~~~, (where C is a constant).

Let H~ be the completion of A(E’) with respect to ~~.~~~,. We have i : H~, --> E. I say
that z is injective (it will allow us to consider H~, as a subspace of E).

H~, is called the "reprodncang kernel Hilbert space" (r.k.H.s.) of u.

Example 1 : : Finite dimension

E=~’~~ 

or :

A is the covariance, it is invertible and

and therefore :

H  = IRn.

Example 2 : : Brownian motion, Wiener space.

Let T > 0 and fZ = E = be the space of real continuous functions on

There exists an unique centered measure ~ such that :

a) the support of  is C0([0,T],IR), the space of the continuous functions vanishing at 0,
b) dt E [0, T] : : c~ ~ wt has the variance t,

c) let 0  ti  t2  ...  tn  T, then : 03C9t1, 03C9t2 - 03C9t1, ..., are independent.

We shall call  the Wiener measure on then E’ is the space of signed
measures v on [0,T’]. . We shall also denote :

~t = B~t~ ~)

and call t ~ B(t, .) : the "Brownian motion" on 
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For VI, V2 E E’ let :

= / (Vl,w) ~v2~W) 
We have for t/ e E’

(v, B) = Jo’T, B(t, w) dv(t) = J T v ((t, T])dB(t) (stochastic integral).
This fact can be verified as follows :

- it is true for v = 6s (by definition of Brownian motion) , ,
- by linearity this remains true if v = L 03B1i03B4ti ,
- then we apply a continuity argument.

Therefore

B(v1, v2) = [0,T] v1([t,T]) v2([t,T])dt.
Now let x/i be a measure on [0, T] . We want to find the barycenter m"1 of the random

variable on Q : (w, (mv1 is an element of 52 = C([0,T]). It is defined by

v  (mill! v) = [0,T] mill (t) v(dt) = B(v, v1) = [0,T] vl ([t,T]) v([t, T]) dt .

By the generalized integration by parts this is equal to : :

J(vl)(t) dv(t)

where

J(v1)(t) = t0 v1([u,T]) du.

J(v1) is then absolutely continuous. On the space

y E ~1((0, T~)}
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we put the norm

J(v1) T0 v1([t,T])2dt.
Its completion is the space of functions from [0, T] into IR, absolutely continuous, null at
zero, whose derivative belongs to the Cameron-Martin space.

Then the Cameron-Martin space is the reproducing kernel Hilbert space of the Wiener
measure .

Definition : 6Ve call an "abstract Wiener space" a triple (H, E, ) where :
- E is a separable Banach space, and ~ is a centered Gaussian measure on E, whose

topological support is E. 
.

- H is the r. k. H. s. associated to ~c .

Actually H is dense in E. This can be proven as follows :

Let z: : H ---~ E be the canonical injection and i* : E’ - H its transpose (we identify H
to its dual).
Suppose that = 0 for every x E H. This is equivalent in saying that :

(x I z* (x’))H = 0 , for every x E H .

Therefore

i* (x’) = Q .

This means that

l d (y) = o.

Therefore

(x’, y) = 0 almost surely,

so this holds for all y E E since Supp p = E and x’ is continuous.
The transpose i* from z: : H --> E is therefore injective and dense and we have :

E’ ~ H 1 E ( i is the canonical injection).

Every x’ E E’ , defines a Gaussian centered random variable on E’, whose variance is
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Now we give without proof some properties of an abstract Wiener space :

1) H is separable, as a Hilbert space. Therefore it is a borelian subset of E ,

2) p,(H) = 0 or I and p,(H) = 0 ~ dimH = +~ (therefore p,(H) =1 b dimH  oo),

3) H is the intersection of the family of measurable subspaces of E, whose probability is

equal to one,

4) the canonical injection i : H -~ E is compact,

5) for every Hilbert space K and u : : .E 2014~ K linear continuous, U o z : : H  K is

Hilbert-Schmidt,

6) for every Hilbert space K and v :.K --~ E’ linear continuous, i* o v : : K --~ H is

Hilbert-Schmidt.

As a consequence of 5) and 6) we have :

7) let Kl, K2 two Hilbert spaces ; u1 : K1 ~ E’ and u2 : E - K2 linear continuous

then

~H~,

the composition U2 o ~ei is nuclear (i.e. it possesses a trace).

2 - L2-functionals on an abstract Wiener space

Let (H, E, /~) be an abstract Wiener space.

Suppose (ej is a sequence of elements of E’ such that (i* is an orthonormal

basis in H. A function f : E ---~ IR, is said to be a polynomial in the (ej) if there exists
an integer n and a polynomial function P on IRn such that

f ( x) = (x), ..., en(x)), ~x E E.

We denote deg f := deg P (P is not defined uniquely but the degree of f is independent
of the choice of P).

We denote by P((ej )) the set of polynomials and by the set of polynomials
of degree  n. It is easy to see that is contained in each ,Cp(E, 0  p  oo (but
clearly not in Moreover, is dense in for these p. Therefore,

independent of the chosen orthonormal family (e~). The same is true for each

~°~((e~~)~ .
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Example : If n = 1, is the family of afline continuous functions : an element of

is a linear continuous function on E plus a constant.

We have :
= H C IR (see infra).

We call pn L2 the set of generalized polynomials . of degree’ at most n is a Hilbert
space.

Let us now introduce the "Wiener chaos decomposition" (or "Wiener-Itô de-

composition"). Let Co = P0L2 the vector space of ( -equivalence classes of ) constants.
We define Cn inductively as follows :

Cn is the orthogonal complement in ~’~ L2 of (Co ~ ... ® Cn _ 1 ) .

(In other words Cn is the set of generalized polynomials of degree n, orthogonal to all

generalized polynomials of degree less than n).
It is clear that for every n : :

Pn L2 = C0 ~ ... ~ Cn

and moreover
o

~Z(E~ ~) = ~ C~. ~

n~0

The Cn are called the "nth chaos" ( or "chaos of order n"). Cl is isomorphic to
H. We have a description of elements of Cn in term of Hermite polynomials.

We recall that the Hermite polynomials in one variable are defined by :

exp{t2 2} dn dtn (exp{-t2 2}), n E IN.

Then they satisfy :

2022 d dt Hn( t) = Hn-1 (t). 

dt 

. IR Hm(t) Hn(t) 1 203C0 exp{-t2 2} dt = 1 n! 03B4nm.
Let a = (03B11, a2, ..., ) E ININ such that |03B1| := 03B1i  oo. We set a! := aa! .

i=i i=1
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Now let be a sequence of elements of E’ which is an orthonormal basis in H.

If a E ININ let
00

:= 03A0 H03B1i (ei(x))
i=l

(This product is well defined). Then :

{03B1! Hm (r) , a e and |03B1|  +~} is an orthonormal basis in L2(E, and : .

{03B1! Ha(x), |03B1| = n} is an orthonormal basis in Cn . 
’

In the case of the Wiener measure associated to Brownian motion, we have the fol-

lowing characterization ’of Cn in terms of multiple stochastic integrals :
F : C([0, T], IR) --~ ]R belongs to L2(P) where P is the Wiener measure if and only if

for each n there exists f n E dt) where An = {t E IRn, 0  ti  t2  ...  tn  T}
such that

F=03A3 fn(t1, ..., tn) dB (tl)...dB (tn ) = 03A3 Fn .
n ~n n

Here 
’

Fo = E(F) E Co and Fn .

3 - Measurable linear functionals
and linear measurable operators

Let (H, E, be an abstract Wiener space. Without loss of generality, we shall identify
H as a subspace of E (i.e., i(x) = x).

A linear mapping f : : E ~ IR is said to be a "linear measurable functional" if
there exists a sequence of linear continuous functionals on E, converging to f , p-almost
surely.

If x E H, it defines a linear measurable functional x(.). Actually, if xn is a sequence of
elements of E’ C H such that zn --~ x in H, then xn(.) converges to the random variable
~ defined by x, in L2(E, ~c). Therefore,there exists a subsequence converging almost surely
to x. Moreover,

 oo . 
’

The converse is true, shown by the following proposition .
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If h E H, the random variable h on E will be denoted by

x ~ (x, h)H.

Proposition : : Every linear measurable functional, 1, has a restriction to H which is
continuous (for the Hilbertian topology). If we denote by f o this restriction we have .

~f~L2(E,u) = 

~f0~H.
The converse is true.

Proof :

We have already noticed that the converse is true. Let (xn) C E’ C H such that

~ f(x) ‘dx E A, where (A) =1.

Take £ the linear subspace generated by A, we see that the above convergence holds for
all x Since ~c(~) = 1, then H and therefore

xn (x) ---~ f (x), ’dx E H.

Therefore the restriction of f to H is uniquely defined.
Now,

/ exp {i(xn - xm)(x)} (dx) = exp - ~ 1.

Therefore, converges in H, and

/ - = ~xn - xm~2H o .

Therefore (xn (.)) converges in L2 (~c). The limit is equal to f almost surely, as we can see
immediately.

- Q.E.D.-

Now let K be a Hilbert space. As before we define a linear measurable function from
E to K, as the almost sure limit of a sequence of linear continuous functions from E to K.

And, as before, if A is a linear measurable function from E into K, its restriction to
H is well defined and continuous from H to K . .

Let us remark that if A is a linear measurable function from E to K, we can define
its transpose as a linear function from K-to H since, for every p E K, x ~ (Ax,cp}K is a
linear measurable functional on E therefore defined by an element of H. We have

(Ax, = (A* cp} (x}, almost surely

_ (x~ A*~P)H
where A* is the conjugate of the restriction of A to H.
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Now we can prove the following result :

THEOREM . If A is a linear measurable function from E to K. such that

. J d (x)  oo, then its restriction to H is a Hilbert-Schmidt mapping B from

H to K. Conversely if B is a Hilbert-Schmidt mapping from H to K, (we shall note

B E G2 (H, K) or B E G2 (H, K) ), it possesses a linear measurable continuation on E,
denoted by A.

Moreover, we have : :

E~Ax~2K d (x) _ 

Proof :

Let (03C6j) be an orthonormal basis of K.
We have :

~Ax~2K = 03A3 (Ax, 03C6j)2K 03A3 (x, A*03C6j)2H.
j j

If we integrate term by term these equalities, we obtain :

d (x) _ 03A3 E (x, A* 03C6j)2H d (x)
E ~ E

- 

j .7

Conversely let B E GZ(H, K). We have for x E H : :

(Bx,03C6j)K 03C6j

= 03A3 (x, B*03C6j)H pj .

.7

Now each term in the right-hand member possesses a linear measurable continuation to

E, and the series converges in LZ (E, ~c. K).
We have then defined a linear measurable extension of A to E.

- Q.E.D.
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4 - Derivatives of functionals on a Wiener space

Let (E, H, be an abstract Wiener space and let K be another Hilbert space. Let

f : E -~ K be a function. 
’

We say that f possesses a Fréchet derivative in the direction of H, at the point
xo E E if there exists an element denoted f’(xo} or D f(x0) or V f(x0) E ,C(H,,K) such
that f(x0 + h) - f(xo) = f’(xo) . h + E H.

Inductively we can define derivatives of all orders.

Example : Let xc E H, i*(E’) and let f be a measurable continuation of h  (x0, h)H
to E. ( f is not continuous).

Then f is derivable at every x, and E H.

This example shows that a discontinuous function may have Fréchet derivatives in the
direction of H.

Definition 1 : : Let us denote by C2~1 (E, K) the set of functions f : E --~ K possessing
the following properties :

- f possesses H-derivatives at every point x E E and ~f’(~) is Hilbert-Schmidt for every x, ,
- f and f’ are continuous from H to K and to G2(H, K) respectively,
- |||f|||22,1 :=E[~f(x)~2K + (dx)  ~.

Then K) is a vector space and i ~.) ~ ( ~,1 is a Hilbertian norm on this space.

Definition 2 : : Let K) be the completion of C2,1(E, K) for the preceding norm;
K) is then a Hilbert space.

Clearly the elements are -equivalence classes of functions.

Convention : Often we shall write ID2,1(K) instead of K}. In the same manner
we shall write ID2,1 instead of ID2,1 (E, IR) or ID2,1(IR).

Now the map f ~ f’ from into L2(E,,u,,C2(H,K)) is clearly continuous ;
therefore it possesses a unique continuous extension from K) into L~(E, ~c, ,C2 (H, K)}.
This extension is again denoted by f’, or D f or ~f.

Example 1 : : Let f be a polynomial function on E, with values in R :
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Then f E C2.1 and

f,(x) " g 
~_~ ay~

The same result is true if P is a C1(IRn)-function such that P and the partial derivatives

aP have polynomial growth.pY
In the same manner if f is defined ( -almost everywhere) as

f(. ) = p(h~(.)~ ... , h~(.)) , hj E H

with P a polynomial function (or a C1(IRn)-function with polynomial growth together with
its derivatives),

v f =  §-/- (hl(.), ..., hn(.)) hj.
j Yj

Example 2 : Let  = 03B3n the canonical Gaussian measure on IRn, ID2,1 is the Sobolev

space W2~1(~y~) of the distributions in such that :

- f E ,

- the distribution derivatives of f belong to L2(IRn, ~yn ) . The norm of ~2~ 1 is the usual

Hilbertian norm :

{ [|f (x)| 2 
+ | af (x) 2 ] d03B3n(x))

1 2
.

Example 3 : If f is a polynomial function with values in K : :

m

j=1

(kj E K, f1, ..., fn E E ).

~f (x) =  aP3 (f1, x~E’,E, ..., fn, x~E’,E) fi ~ kj.

(Analogous assertion for generalized polynomials, or "moderate" regular functions Pj ) .
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Example 4 : : Characterization of the elements of ID2,1 in the case of the Wiener measure.

If E = Co ( ~~, T ~, R) and ,u is the Wiener measure, we have seen that an element of
can be written as a series

F _ n! / t2, ..., tn) dBtn
n=o ~n

with
00

, n! ~fn~2L2(0394n)  00.
n=0

Then F belongs to ID2,1 if and only if

00

03A3nn! " ~fn~2L2(0394n)  00

n=I

and in this case
cxJ

n=I

where fn is the function defined on On_1= t0  ti  t2  ...  tn- i  t} by

t2, ..., = fSYMn(t1, t2, ..., tn-1, t) ,

being the symetrisation of In .

The formula needs an explanation :

In the right member

(t,03C9) ’"‘’’ In-1 (ftn)(03C9) = g(t,03C9)
belongs to

L2([0,T] X 03A9, dt ~ dP),
therefore for almost 03C9,

t - g(t, w) is a L2 ( [o, T~, dt) function .

is the indefinite integral null at zero of I~ _ 1 ( f n ) (w ) :

J(In-1(ftn)) = t0 In-1(fsn) ds .
Therefore VF(w) is an element of the Cameron-Martin space.
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We now give several useful properties :

. The set of polynomial functions on E, with values in K is dense in ID2,1(K).

. Therefore the algebraic sum of chaos ~ Cn is dense in ~ 2 ~ 1,

. The set of smooth functions on E is dense in C2~~ (a function is said to be

"smooth " if it has the form :

x ~’‘’ f (1f1 ~ x~E’,E~ ...,1fm xIE~,E)

with f belonging to f and its derivatives are bounded).
. Let 03C6 : IRn ~ IR be a function in C1b(IRn) and let F1, ..., Fn E ID2,1. Then

..., Fn) is in ID2,1 and

-- n ~03C6 ~yi(F1,...,Fn) ~Fi.

This result is false if the above hypothesis is not satisfied. For instance on IR,

f --- 9 = eX E ID2,1, but f o g ~ L2 (IRn , 03B3n) .

Remark : The operator V, called the "stochastic" gradient, or "stochastic" derivative,
is very close to the ordinary gradient as we can see. The usual gradient at the point Xo
is an element of E’ (if the function takes its values in IR). The stochastic gradient is the
composite of the ordinary gradient by the application i* from E’ to H.

In an analogous manner if f : : E - K has an ordinary gradient, this gradient is a
linear mapping of E into K ; f ’ E --~ K.

The transpose t f’ is a linear continuous mapping from K into E’ . Then the stochastic
gradient is equal to E ~C(K, H).

In his lectures at the EIPES in 1989, D. Nualart, in the case of usual Wiener space
defined the stochastic derivative of the functional of the form :

F = f(Wt1 , ..., Wtn ), f E C~b(IRn) (or f polynomial)

by

DF = L w"" ( VY tl , ..., Wtn) 1[0,tj].
a ’-~
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This definition is actually equivalent to ours, up to the notations.

Actually, let = ~ /~ (~) d~, ~ belongs to the Cameron-Martin space and

~ =(~}c-M

The stochastic derivate of F in our notations is therefore

~F ~yj (h1,...hn) hj.

There are actually equivalent since the Cameron-Martin space is isomorphic as Hilbert
space to I~([0,r], d~). We shall have to consider V as an operator (densely defined) from
I~(E,~,J~) into L~(E,/~2(~~)). It is a closed operator, naturally not continuous.

5 - Anticipative stochastic integral

Definition : : TAe transpose of the opener V M called the "Skorokhod integral", or the
"divergence operator".

The definition needs an explanation : on Z~(E,/~J~) (~ : : Hilbert space) we have
defined the scalar product

(/~) - / (/(~M)~M
and on L~(E, ~, jC2(~ ~)) we have the pairing :

= / Trace (G*(x) o 
Then G L2(E, , 2(H, K)) belongs to dom(03B4) if and only if the linear form on ID2,1(K) :

F ~ ~ (DF, G)~(~~)(~) is continuous for the topology induced by L~(E,/~j~).
We denote 6 the Skorokhod integral and we have by definition, for every F e D~(~),

~ F~G~~=~ (V~G)~~~)~ if ~(G) is defined.
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Example 1 : : Let a E H, and cp E ID2,1(K). Then G :_ 03C6~a is Skorokhod integrable and

b(a ® cp) = â(.) a) .

In particular, if G : E ~ H is such that G(x) = a, ~x :

sG = ~(:).

Example 2 : : E = IRn,  = 03B3n, G : IRn.

Then

(~G j . (x)
_ 1 ~x~

= (x, G) - div G(x).

This formula can be written in another manner :

6G = (., G) - Trace (~G).

Example 3 : : If G E ID2,1 (E, ,C2 (H, K) ), then it is 03B4-integrable, and 03B4 is continuous

from ~~~1 (,C~(H, K)) in .

Example 4 : : Let F E L2 (E, H) such that for every h ~ H : ~ ( (F, h) H) exists. Then
for every linear continuous operator A : H -~ H with finite Tank ,A(F) is Skorokhod
integrable.

n

More precisely, if A = ~ (., aj ) H ej (with aj and e j in H, (e j ) being orthonormal)
j=1

we have :
n

A(F) = ~ (F, aj) H ej
j==i

n

b(A F)) = 03A3 (F’ aj) ~ej ((F, aj)) .

j=1

(see example 1).
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This can be written in another manner :
n

Let A* be the transpose of A : A* = L(.,ej)H aj and let A* defined as :
j=i

n

j=l

Then 
’

j=1

If we now suppose that DF exists, we have :

n

L ~ej ( (F, a j ) ) = Trace (A o DF) . .
j=1

Therefore, we have :

b(A(~)) = (F(.) , A*(.))H -- Trace (A o DF) .

Example 5 : : The Skorokhod integral coincides with the ordinary Ito-Integral for adapted
processes (see the above mentioned Nualart’s Lecture Notes for a precise statement of this

fact). .

Now we give some properties of the Skorokhod integral :

a) Let A : K ---~ K’ be a linear continuous operator (K and K’ Hilbert spaces) and let
F E L~ (E, ~, ~2(~. ~)). . If F is Skorokhod-integrable so is A o F and we have

o F) = A(bF) .

As a consequence we have : 
.

- Let F E such that b(F) exists, then for every k in K we have

~~(F), k) - b ~F* ~l~)~ . °
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- Let F E Lz ~E, (H, GZ(H. K)~) such that b(F) exists, then
v

for every h E H, b ~F(.)(h)~ exists

and
v

b (F)(hj = ~ (F(.)(h)~ .

v

If F E GZ (H, Gz(H, K)~, F denotes the operator of GZ ~H , G2(H, K)) such that :

v 
, ,F(h)(h’) = F(h’)(h), h, h’ E H .

b) Let p E F E GZ(E, ~" H) such that F is Skorokhod integrable. Suppose that

03C6F E H) and that b(F)cp - (F, D03C6~H belongs to ), then pF is Skorokhod
integrable and

03B4(03C6F) = 6(F)cp - (F, D03C6~H.

c) Let An : H -- H a sequence of linear continuous operators such that An - IdH in
the simple convergence.

Let F E ID2,1 (GZ(H, K)), then 6(F. An ) - b(F) in L2(E, , K). In particular, if

(en) is an orthonormal basis of H, the sequence

n

(03A3 et ~eiF(ei))
i=1 

’

converges to 03B4(F).
d) Let F, G in ~2~1(I~) we have :

~(a(F>s(c)) _ ~~ c).. ~ + ~DG~*~G2(H,H) ~
= + IE{Trace DG(.) o DF(.)} .

More generally, if F and G belong to m2°1 ~G2(H, K)) we have :

v .

_ ~f ~F’~ G)c2~x,x)~ + °

e) The operator b, as an operator densely defined from Lz ~E, £2(H, K) ) into L2(S2, K)
is closed.
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We now briefly introduce the Ogawa integral.
n

Let P : H --~ H be an orthogonal projector with finite rank : P(h) = ~(h, ej .

j=1

We denote P the random variable with values in H :

n

P(.) = ~ ej (.) ej .

j=1

Now let F E LO(E, H) be a random variable with values in H. We shall say that

F is "Ogawa integrable", if there exists G E LO(E, such that, for every increasing

sequence (Pn) of orthogonal projectors converging simply to IdH, the sequence of real

random variables ( (F. Pn ) converges to G in probability.
0

We shall denote by 6(F) the Ogawa integral G of F.

If F E L2 (E. H) is such that, for every a E H : :

(F, a)H 5(.) belongs to L2(E, ,

we shall say that F is "2-Ogawa integrable" when there exists G E L2 (E, such that

(F, Pn) H ---~ G in quadratic mean.

(The Pn being as above).

Example : = The Ogawa integral is equal to (., F(.))~,n.
In this case , we have :

o

6(F) = + Trace (VF) .

Remark : There exists elements of >D2~~(H) which do not possess an Ogawa integral
(Rosinski).

For instance, in the case of the Brownian motion, the function : 03C9  J(B(T-)(03C9))
where J denotes the indefinite integral null at zero, belongs to 1D2’I (H’) but is not Ogawa
integrable. 

°
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Next we give a necessary and sufficient condition for Ogawa integrability :

Let F E 1D2’1(H) ; F is Ogawa integrable if and only if, for almost every x :

DF E ,cl (H, H) (~ DF is nuclear)

and we have :
o

b(F) = b(F) + Trace (DF). .

Sketch of the proof :

Suppose P : H -; H is an orthogonal projector with finite rank. We know that :

~(PF) = (F, P) - Trace (D(PF)) .

Let Pn ~ I d. We know that

03B4(PnF) ~ b(F).

It is trivial that :
_ a

(F, Pn) --~ ~(F’)
o

(if b(F) exists) and

Trace(D(PnF)) - Trace (DF)
- Q.E.D. -

6 - Extensions and remarks - Localization

Now we shall consider the case where (E, H, ~) is the Wiener space. If F E ID2’1, then
~F is a random variable with values in the Cameron-Martin space. Therefore, if t E [0, T]
we can speak of the value of at t, denoted Analogously, time derivative

of at time t (defined for almost every t) makes sense. We shall denote it :
.

. ’~t F(w). We have the equality :

2 () 
~ 

2~~F() ~2L2(H) = E( 
0 

|~tF(03C9) |zdt).

Lemma 1 : : Let F E ID2,1. Then 1{F=0}~tF = 0 almost everywhere on [0, T] x S2.

For the proof see Nualart-Pardoux.
This results in a localization theorem : if F is null (almost everywhere) on a set, so is its
derivative. The derivation is a "local operator".
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Definition 1 : A random variable F will be said to belong to ID2,1loc if there exist
. a sequence of measurable sets of E, Ek ~’ E

and

. a sequence (Fk) C ID2,1 such that F|Ek = Fk|Ek a.s. b’k E N.

Thanks to the preceding lemma we can define the derivation operator for an element
of ID2,1loc.

Definition 2 : : Let F E ID2,1loc localized by the sequence (Ek, Fk). DF is the unique
equivalence class of dt x dP a. e equal processes such that

DF|Ek = DFk|Ek, for all k in N.

This generalized derivative has the usual properties of composition : :

let p : IRm ~ R of the class suppose F = ..., Fm) is a random vector whose
components belong to ID2,1loc ; then

and

~03C6(F) _ f (F) . DFi.

i=1 t~~Z

In the same manner we define (Dom 03B4)loc as follows :
F : E ~ H belongs to (Dom 03B4)loc if there exists a sequence Ek ~ E, and a sequence
Fk E - H such that F~ E (Dom 6) for every k, such that

. F = Fk on Ek ,

. 6(Fk ) = a.s if k  ~; ;
we shall say that F is "localized" by (Ek, Fk).

For sufficiently reasonable integrands on (Dom 6) Nualart-Pardoux have shown that
6 is local.

Definition 3 : Let F E (Dom 03B4)loc localized by (Ek, Fk), 6(F) is defined as the unique
equivalence class on random variables on E such that

= 03B4(Fk)|Ek, for all k in IN.

( Note that 6(F) may depend on the localizing sequence .
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We shall need another notion of stochastic derivatives and

Skorokhod integrals for some functions not necessarily belonging to ID2,1, nor

Skorokhod integrable, introduced by Buckdahn :

Let T : E --~ E be a measurable mapping of the form :

:r ~ x + Fx where F E 1D2’ 1 {H).

Let ~ E and suppose that for every sequence of smooth random variables {~’~) E ID2,1

converging to £ in ~2’~, the following limit exists and is independent of the approximating
sequence chosen :

lim V (~n a ~’)
n 2014~ oo

where the limit is taken in probability.
Let us remark that 03BEn o T belongs to ID2,1 since the 03BEn are smooth.

The common limit of the above sequences is denoted by V (~ o T).

Lemma 2 : : Suppose that T( ) « , then the limit exists and we have, -almost surely : :

v (~ o T) = (IH + (V F)*) ({v~) o T) = (IH + VF) * ((v~) o T)
(where ( )* denotes the adjoint of the bounded operator).

Moreover, if ~ o T E lD2’1 : : i7 (~ o T) = v(~ o T) .

Proof :

We have, since the ( f n ) are smooth :

V(çn o T) = (IH + o T).
Moreover, ~03BEn converges in probability, and since is absolutely continuous with

respect to (~03BEn) o T converges in probability, so does o T).
It now remains to prove that the limit does not depend upon the approximating

sequence (~n ) .
Let 03BEn ~ 03BE and 1]n ~ 03BE in ID2,1. Since the operator i7 is closed we have :

lim Q T) = lim ~(~n o T).
n n

Therefore, v is well defined by what precedes. It is obvious that :

V=V if 

By duality, we can define a generalized Skorokhod integral of ~ o T, for ~ E D2,1 (H) :
- Lemma ,~ is proven. -



40

Definition : Let (ei)i~IN be a fixed orthonormal basis of H. We define

~(~oT) ~_ 
i

if the limit of the right member is taken in probability.
( ~ei denotes the generalized derivative in the ei-direction introduced just above).

Lemma 3 : : Suppose T = I + F as above is such that « ~c. Then b(~’ o T) exists and
satisfies the following identity : :

(b(~)~ o ~’ = b(~ o T) + (~ o ~’, F)H + Trace ((~~) o T. ~-almost surely.

Proof :

~V

Let 03BEN = then

z=1 z=Z .

But

ei ° T = ei + (F, ~

therefore :

:~r

2=1

( by the preceding lemma)

i=1

N

= 03A3[03BE, ei~H ei - ei~H] ° T - 03BEN ° T, F~H - Trace vF* (~03BEN) ° T) .

I=1

Now ~N ---~ ~ in 1D2,1 (H) ; ; then the right member of this last equality converges in.
LO(E, ~c) . Hence the sum is convergent in LO(E, and

N
~ (~ ° T, ~e; ( (~ ° T, ei ) H ) is convergent in LO (E, .

a=1

- Lemma 3 is proven. -
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CHAPTER TWO

Transformation of a Gaussian measure

Given an abstract Wiener space (H, E, and T : E --j E of the form :

F:E--~H.

We shall examine when ~ /~. We shall consider the following cases :

- F is linear continuous from E into H,
- F is regular (i.e., possesses stochastic derivatives).

We shall give some expressions for the Radon-Nikodym density 201420142014.
In the following chapter we shall study a family of flows : Tt = I + Ft where

Ft : E ~ H, (t E [0, 1]) and shall study the work of Cruzeiro, Buckdahn and Ustunel-
Zakai on this subject. We shall only give the statements of the results and from time to
time sketch of the proofs.

1 - Preliminary results on equivalence and orthogonality of
product measures

Let (Ek, Bk)k~IN* be a sequence of measurable spaces and for every k, let k and vk

be two probabilities on (Ek, Bk) such that k « Vk . Let us set Pk = d k.
dvk

Let us consider the product measures : . 

t

00

 =  k

and
00

v = 03A0 vk
k=l

and let

ak = / 03C1k(xk)vk (dxk).

These notations having been fixed we have the following result of Kakutani :
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THEOREM 1 : : We have the dichotomy : :

 « v or  I v.

00

a) W v ~ JY ak converges ; and in this case the density is equal to 03C1(x) = fl 03C1k(xk)
i

(convergence in mean ).

b) ~C 1 v ~ fl a,~ diverges to zero. (We cannot have divergence to infinity

since 1).

Applications : Ek = IR for every k

121 03BBk203C0 exp{- (xk - 03B2k)2 203BB2k} d
Then

exp{-1 203C32k03BB2k [(xk - 03B2k)2 03C32k - (xk - 03B3k)203BB2k]}
and

03B1k = IR 03C1k(xk) dvk(xk) = 203BBk03C3k 03BB2k + 03C32k exp {- (03B2k - 03B3k)2 4(03BB2k + 03C32k) l.
We now give some particular cases :

- Same covariance (Ak = ak for every k). and v are equivalent if and only if

£ - ~Yk~ 2  00

k

and the density is then equal to

{xk(03B2k - 03B3k) 03C32k ) 03B22k - 03B32k 203C32k )

Otherwise, we have orthogonality of measures.
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- Same mean 03B2k = Ik = 0 for every k.

p and v are equivalent if and only if :

~ (~~ _  o0

and in this case the density is equal to :

d  dv(x) = hm f -2014 
.

If this condition is not satisfied we have orthogonality.

2 - Affine transformations of Gaussian measures

Now let be an abstract Wiener space. If (en) is an orthonormal basis of H,
the random variables en are independent Gaussian variables on E, with mean zero and
variance one. The law of the sequence (en) is therefore a product measure on IRIN :

00

03B3IN = ~ 03B3n
n=O

where Tn = T (Gaussian measure on IR) for every n.
Now we have a measurable (defined almost everywhere) map 03B8 of E into IRIN :

x ^^~ (en(x))~.

If the en belong to E’, the en are everywhere defined and 0 is continuous from E into IRIN.
It is clear now that the image of  under 0 is equal to 03B3IN. We have 0(H) = l2 as we

can see immediately (the en{x) are defined in a unique way on H).

Proposition 1 : : Let a E E and Ta( ) be the translate of  by a. Then we have the

dichotomy- :

Ta (J.L) ~  Or Ta ,

~  if and only if a E H and the density is equal to ex a . - 1 
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Proof :

is a Gaussian (non centered if a ~ 0) measure with the same covariance than ~c.
Let (en) C E’ (orthonormal in H). It suffices to prove the same result for 03B8( ) and

03B8(T03B1( )). But B(Ta(u)) is the product of Gaussian measures on IR with variances one and
mean en (a). Therefore it suffices to apply the result of the previous paragraph.

- Q.E.D.-

Now let T = I + F be a linear continuous transform of E into E. Let us suppose that

F(E) c H. In this case F is continuous for the topology of H by closed graph theorem.
Suppose moreover, that = IdH+F|H is an invertible operator. Then T : E - E

is also invertible and

Z’T1.=1- (7j~)-1 o F.

Proposition 2 : : Suppose T = I + F with the above properties and that F|H is nuclear.

Then T -~ (~c) and ,u are equivalent and

dT-1( ) d (x)=exp{-(Fx,x)H- 1 2~Fx~2H} |det T|.

Proof :

Let us explain what this formula means. Indeed, F|H being nuclear, admits the

decomposition : F| H (x) = 03A3 03BBn (x, en )H f n , (en, f n orthonormal in H) and we can
n

define (F(x), on E by L An fn(x), we set : det (I + F) = 03A0 (1 + an ). (This
n n

has sense since ~~  oo). .
n

. Let us suppose first that F is symmetrical :

F(x) = ~ en)H en
n

where en is an orthonormal basis composed of eigenvectors of F. .

Let 03B8 : E --> IRIN associated to these en. We have seen that : 03B8( ) = 03B3IN (product measure).
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Now 0((/ + F)-1 ) is the product of measures with densities :

20142014(1+A.) 
We have

d((1+03BBn)-1en( )) d(en( ))) (xn) = (1 + 03BBn) exp{-03BBn x2n - 1 2 03BB2nx2n}

d(03B8((I+F-1)( ))) d03B8( ) __ . 1 .

(x) = 03A0 (1 + 03BBn) exp{-(Fx,x)H - 1 2 ~Fx~2H}.°

~ Now let us consider the general case (F non necessarily symmetrical)

~ ~ ~ -~ E

(7 + j~) o i is an operator from ~f into ~f. There exists a unitary operator !7 : N 2014~ ~f

"diagonalizing" F o i, therefore (7 + F) o z. Let C/ its extension to E ~ E. We apply

the result for ~(7+F)C/-~.
2014 Q.E.D.2014

Now we shall consider the case where F|H is not nuclear.

We know that in any case F|H is Hilbert-Schmidt.

* Suppose at first that rank (F) is finite.
Then the formula of Proposition 2 gives :

Z=l 1=1 t=l

=n (~ ~) ’’~ ~p{-s ~ - E~ - ~ "~~}’ .
~=1 t==i ~=1

~ Now suppose F Hilbert-Schmidt with infinite rank :

W (1 + A~) e"~’ converges since V~ ~~j~  oo.

t t

The limit is called the "Carleman detemninant".
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Now we can prove that

lim exp{-(03BBi x2 - f 03BBi)-1 2~Fx~2H} exists in if F is H-S.

We denote it by :

exp{-["(fx,x)H - Trace F"] - 1 2 ~Fx~2H}.
Therefore we have the following theorem :

THEOREM 2 : : Let T : E ~ E linear continuous, such that Tx = x+Fx with F(E) c H.

Then F|H defines a Hilbert-Schmidt operator from H into H. Suppose that T|H is invertible

then T : E - E is invertible. Moreover, T’1(~) is absolutely continuous with respect to ~,
and we have

d(T-1( )) d  (x)=0394(I+F) exp{-["(Fx,x)H - Trace F"]-1 2 ~Fx~2H}
with

00

0(I + F) = ~ (1 + e-~~, ,
t

the ~i being the eigenvalues of F.

We have seen the affine case.

Now we may give the result for the general case announced in the beginning.

THEOREM 3 : Let F E m2’1(H). . Suppose that (I + F) is invertible and that for every
x E E , the operator IH + ~F(x) from H to H is invertible, then (I+F)-1( ) is absolutely
.continuous with respect to y and we have : :

d~ (x) = o (Ix + 
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CHAPTER THREE

Transformation of Gaussian measures

under anticipative flows

Let (n, H, P) be an abstract Wiener space and let T be an invertible transformation
of n into n (the only interesting case will be of the form : T := I d + F with F ID~’~(~)).

Definition : A family of tranformations (Tt)t~[0,1] from 03A9 to H will be called an

"interpolation" of the invertible transformation T if

a) To = Id, T1 = T,

~ each T~ is invertible,

c) for each v, t - Ttw and t - are strongly continuous.

Moreover, if

d) for each 03C9, t  Ttw and t - T-1t03C9 are strongly continuously differentiable, the
interpolation will be said to be "smooth".

Example 1 : Tt(w) = w + tA(w) where A is a function from H to H, such that

v ~ w + is invertible for every t .

Example 2 : Suppose A : Q - H is continuous and suppose that we have defined a
family of transformations (Tt) from Q into Q by : :

Ttw = ~ ds (time homogeneous case)

i.e. |dTt dt(03C9) = A(Tt03C9)
=~

we have then :

dTt dt (T-1t(03C9)) = A(03C9).
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Example 3 : : =a;+ / /~ ~(~,T~(~)) d.5.
If 03A3(r, 03C9) is continuous on [0,1] x f! into H or into H and satisfies a global Lipschitz

condition :

!E(~i)-E(~2)!L~i-~!h

We can consider as the solution of the ordinary differential equation

~(~) = E(~r~))t To (~) = ~

on the Banach space fh

If for every t G [0,1], 03A3 (t,) is Frechet differentiable, with Frechet differential

denoted by ~ 03A3 (t, 03C9), and if we assume that ~03A3 (t, 03C9) is bounded continuous on [0,1] x H, ;
then the equation

/ /- 03A3 (r,Tr(03C9)) dr

has a unique solution.

Moreover, 03C9  Tt(03C9) is Fréchet diSerentiable and ~Tt(03C9) is continuous, invertible on

[0,1] x n, and satisfies the differential equation :

~ (9T~)=(9~,.)or,(~))~r~).
Its inverse ~-1Tt03C9 satisfies :

~ = -9-17~) ~ (a~(~,.) 

Consequently, by the global inverse theorem, Tt(03C9) is a Ci-diffeomorphism. Therefore, we
have an interpolation of T defined by 

’

fi

/ 
Later on we shall come back to this example. Now let us return to the general situation.
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THEOREM 1 : : Let T be a transformation from S2 to S2 and (Tt t E (0,1~) be an inter-

polation of T. Let us assume moreover that

(a) Tt(P) G P, Vt E [0,1] and Let Xt(w) = dTt(P) dP (w), ,

(b) Gt = T-1t - I E ID2,1(H) and dT-1t dt E H’

(c) dT-1t dt 
i 

as a function from [0, 1] x S2 into H is almost surely continuous in (t, w)

(for dt ~ dP) and ~T-1t(03C9) will be assumed to possess a continuous extension (0,1) x S2,

(d) i ° Ts E m2’1 (H).

Then

= exp{- J 0 
t 

(b o Ts]) o T-1s(03C9) ds} (i)

This implies that the measures and P are equivalent.
Moreover

Xt = exp{-t003B4[dGs ds ] ds

- Trace [(~[dGs ds o Ts] o Ts -1) 2022 ~Gs] I ds} (2)

where 6 was defined precedently by :

a (g ° T) = ~s~) ° T - ~~ ~ T, F) H - Trace ((o~) ~ T . V F) .

Moreover, if dGs ds and Gs are in ID2,1(H),then the formula (2) becomes :

- t0 Trace [(~[dGs ds o Ts] o ~Gs] ds }. (3)
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Proof of ( 1 ) : :

We have:

0 = 1 ~ [T-1t+~ o Tt+~ - T-1t o Tt]
= 1 ~ [T-1t+~ ° T-1t+~ ° + 1 ~ [T-1t+~ ° - T-1t ° Tt].

Therefore by (c)

° Tt W>I . dTt dt (03C9) + dT-1t dt ° >W = ° 4>

Let now a : Q - Ill smooth and let h e H. By (d) we have:

= £ ((a O Tt) (T-1t(Tt03C9 + ~h))]
= £ (Tt03C9) . h + °(£))
= (V(a o Tt), (~T-1t) o Tt(w) h) H .

Now if we set h = d dt Tt (w) , comparing with (4) , we obtain :

~ ~~ ~~ ~ ~~" 
dt ~~’~ ~ ~~ ~~ ~ ~ ~ ~~~ ’ it ~ ~ ~~’~ ~ ~ °

But the left-hand member of this equality is equal to d dt (a o Tt ) (w) . Therefore we obtain:
Ela O Tt03C9 - a(03C9) i = E £ a o Ts03C9) ds)

= -E . (t0 (V (a O Ts) (03C9), dT-1s ds o Ts03C9~ ds).
But from condition (d) , ( dT-1s ds O Ts e ID2,1 (H)), and integrating bY Parts We obtain:

Ela o Tt (W) - a (W) 1 E ( (a O Ts03C9) 6 O Ts] (w) ) ds
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and

IE {03B1(03C9).(Xt(03C9)-1)} = -IE (~t0 a(a;) Xs(03C9)(03B4[dTs-1 ds o Ts]) o T-1s03C9 ds).

Since this last inequality is true for smooth functions we have :

Xt(03C9) = 1 - ~t0 Xs(03C9)(03B4[dT-1s ds o Ts]) o T-1s03C9 ds.
Finally, since Xt is P-almost surely positive, TtP and P are equivalent.

On the other hand, if a : H 2014~ IR is smooth, then :

IE {a o T-1t Xt} = IEa.

Hence if jB is a Borelian subset of Q, then

P(B) = 0 ~ IE{1B o T-1t XJ = 0 ~ la o = 0, a.s.

Therefore, (P) and P are equivalent.

Proof of (2) : :

We start from

(~)or=~ +Trace ((V~)or * VF)

with

03BE = DT-1s ds o Ts, T = T-1s, F = T - Id = Gs
" 

and

Then

03B4[dTs-1 ds o Ts] o Ts-1=03B4(dGs ds) + (dGs ds, Gs) + Trace ((~ [dGs ds o Ts]) o Ts-1.~Gs)
and we integrate from 0 to t.
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Proof of (3) :

It is immediate from (2) since 8 = 6 under this hypothesis.

We have expressed the density Xs in terms of dT-1s dt. (The next result will give an

expression of Xt in terms of .

- Q.E.D.-_

Corollary : : Under the assumptions and conditions of the theorem 1 let us replace T, Tt , Ts

and Xt by , Tt 1, T-1s, dT-1s(P) dP = Yt. Then we have :

Xt(03C9) = dTt(P) dP (03C9)

= exp{~t0(03B4[dTs ds o Ts-1(2022)]) o TsT-1t (03C9) ds}
and

= exp{ - 03B4(Gt)(03C9) - 1 2 Gt, Gt~H(03C9)
+ ~0t Trace [(~[dTs ds o T-1s]o T-1s] o TaT-1t(03C9)).~(Gt - Gs (TsT-1t))(03C9)] ds}.

Proof :

By Theorem 1:

Yt(03C9) = exp{-~0t (03B4 [dTs ds o T-1s]) o Ts(03C9) ds}. (A)

On the other hand, if a is a smooth functional :

Y-1t (T-1t03C9)} = IE{a(TtT-1t03C9) 
= Yt(03C9)}
= IE{a(03C9) Xt(03C9)} .

Therefore :

Xt(03C9) = Y-1t (T-1t(03C9)) = exp{t0(03B4[dTs ds o T-1s(.)]) o Ts o T-1t(03C9) ds},
- which proves the first formuda.2014
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To prove the second formula let us start from

T~=~+~(~)

which implies

and if s = t

~=r~+~ (ir~)’

Therefore

= ~ + F. (r,-~) - F, (T,-~).

Now 
’

= r,-’(~) - ~ == -F, (T,-~).

Therefore :

T~’~ = a; + G~(~) - G. (T.T,’~).

In the formula

= exp{~t0(03B4[dTs ds o T-1s]) o TsT-1t03C9 ds},
let us apply the formula given 6 in terms of 03B4. We obtain :

f /~ / ~TX2(03C9) = exp{~t0(03B4[dTs ds o T-1t](03C9)

+ Trace [(v[~or~~or~(~)).v(Gt-G.(T.T,-’))(~)]~ d~
Now we integrate with respect to s, by using :

d ds(Ts o T-1t(03C9)) = -d ds(Gs(TsT-1t03C9)) = d ds(Gt(03C9) - Gs(TsT-1t03C9)).
2014 tVe obtain the second formula. 2014
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Now we give an integral equation satisfied by Xt .

THEOREM 2 : Let T : S2 --~ S2 and Tt : S2 --~ S~ (t E (0,1~) be an interpolation of T.

Assume that for each t E [0,1], Tt(P) G P and that Xs o T-1s E ID2,1loc (H) (this

condition as satisfied if dTs ds oTs-1 E ID2’1(H) and Xs E ID2,1loc), then Xt sdtisfies :

Xt = 1 + ~0t 03B4[Xs dTs ds o T-1s 1] ds.

Proof :

Let a be a smooth functional. Then

_ 

~ ’~(~~~~ ~ f 
t 

da~ds(~) ds~
ds ds}0

= IE{a(03C9)} +t0 
e 

> [dTs ds o T-1s(03C9)]~} ds
t

= IE{a(03C9)]} + ~t0 IE{a(03C9) 03B4[Xs dTs ds o T-1s] (03C9)} ds0 .

- Q.E.D.-

Applications of these formulas.

. In the example (1 ) : = w + t A(w) ,

Xt(03C9) - exp{~t0 (03B4[A(T-1s(.))] ) o TsT-1t(03C9) ds}
(this result was obtained by Bell) .

. In the example (2) : Tt(03C9) = 03C9 + t0 A(Ts(03C9)) ds

ds (T-1s (03C9)) = A(03C9)
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and

Xt (03C9) = exp (~t0 (6(A)) o TsT-1t (w) ds) .Xt (W) = exp I 03B4(A) o TsT-1t (03C9) ds .

. We shall now study the example three :

c

_ ~ + 
. / dr. (B)

We have given some hypotheses insuring that Tt03C9 is a solution of the ODE with values in
the Banach space 03A9

dTt dt (03C9) = 03A3(t, Tt(03C9))
To(w) = cv

and that 03C9  Tt (cv) and 03C9  T-1t (cv) are Fréchet differentiable (in 03C9). Then :

t

IH + ~ t0 03A3(s, Ts03C9) ds

is invertible and satisfies the hypotheses of Ramer’s theorem
As a consequence the probabilities

Tt P, P and T~ ~P are equivalent.

Now in (B) we replace c~ by 

t

Tt T-1s (03C9) = T-1s (03C9) + 03A3(r, TrT-1s (W )) dr . .0
Setting : TtT-1s (03C9) = 03C6s,t (03C9) and TsT-1t (03C9) _ 03C8s,t (w), t > s we have :

03C8s,t o 03C6s,t = 03C6s,t o = I d

and :
t

-E- / dr

t

~~,t (~) _ ~ - / ~ (r~ (~)) dr .

Note that 03C6(1-s)t,t, s E [0,1] is, for t fixed, an interpolation of Tt and naturally

(Tt)tE(o,y is an interpolation of T1 : 03C6s,t is a "two-parameter" interpolation of T.
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. Now we shall specialize the example in the case S~ = Ca ~0, I~, with the Wiener
measure and we shall use the following notations in this case :

If U, U1 and U2 are random functions with values in H ; if H is the Cameron-Martin
space, then

U(03C9) (.) = ~0 u(03B8, 03C9) d8

03B4(U) = ~10 u (03B8, 03C9) 03B403B8 (W)

U1,U2 ) H = 10 
i 

u1 (03B8,03C9) u2 (03B8,03C9) d03B8.
a

But if H is the LZ ~o,1~ space

(.) = u(., 03C9)
1

bU = / u(9, c~) 

i

v2 ~ H = / ui (~, ~) u2 (e, c~) d8

t

(Tt03C9) (.) = 03C9(.) + ~t0 P(ra .) 03C3(r,Tr03C9) dr (C)

where p is a smooth function on [0,1]2 and 03C3 : [0, 1] x 03A9 ~ IR is assumed to satisfy
Lipschitzian and differentiability conditions.

In terms of 03C6s,t and 03C8s,t, (s  t) we have :

t

(.) _ ~(.) + / p(r, .) dr

t

(~) _~(.) - / p(r,.) dr.
S

We consider these equations as oDE in Banach space (the first in t with s fixed ; the second
in s for t fixed) , we have existence and unicity of solutions with

03C6s,s (03C9) = 03C9, 03C8t,t (03C9) = 03C9 and 03C6s,t o 03C8s,t (03C9) = 03C9.

Then and axe Fréchet differentiable in w E C0([0,1]).
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Consequently, ~03C6s,t and ~03C8s,t restricted to H are invertible, and by Ramer’s
theorem: and P are equivalent.
Set

Ls,t (03C9) = d03C6s,t(P) dP

and

A d03C8s,t(P)~=~~’- .
Now let us fix t in the equation :

T~ (.) = a;(.) + / p(r,.) (7(r, dr.

Let s = t 2014 A and A G [0, t] be the interpolation parameters.
Now let us recall that (cf (3))

-~t0Trace(~[ dGs ds o Ts]o Ts-1.~Gs) ds} (D)

where G~ == 7d, and apply the result for T~ satisfying the relation :

T,~ (.) = ~(.) + / /~ p(~.) dr.

Then we obtain an expression for ~ : :

X, = exp{ / [~0t ~03C1 ~03B8 (r, 03B8) 03C3(r,03C80,r)dr] 03B403B8(W)

- ~’[f~~~~]~
- t0t0t0[03BB0~03C1(r,~) ~n D03B8 03C3(r,03C80,r)dr] o ~03C1(03BB,03B8) ~03B8 (D~03C3(03BB2.)) o 03C80,03BB d03BB d03B8 d~}

We can obtain another formula for the Radon-Nikodym density using the relation :
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in the expression:

Xt(03C9) = exp {t0(03B4[dTs ds o T-1s]) o TsT-1t(03C9) ds} .

We then obtain:

Ls,t = exp{ ts 03C3(r,03C8r,t) [03B403C1(r, .) - f s r 03C1(r,2022), 03C1(u, 2022)~H du, dr
- st(~03C3)(r, 03C8r,t), 03C1(r,2022)~H dr}.
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