@article{AMBP_1997__4_1_93_0, author = {van den Berg, I. P. and Koudjeti, F.}, title = {From binomial expectations to the {Black-Scholes} formula : the main ideas}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {93--101}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {4}, number = {1}, year = {1997}, mrnumber = {1442337}, zbl = {0895.60020}, language = {en}, url = {http://archive.numdam.org/item/AMBP_1997__4_1_93_0/} }
TY - JOUR AU - van den Berg, I. P. AU - Koudjeti, F. TI - From binomial expectations to the Black-Scholes formula : the main ideas JO - Annales mathématiques Blaise Pascal PY - 1997 SP - 93 EP - 101 VL - 4 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - http://archive.numdam.org/item/AMBP_1997__4_1_93_0/ LA - en ID - AMBP_1997__4_1_93_0 ER -
%0 Journal Article %A van den Berg, I. P. %A Koudjeti, F. %T From binomial expectations to the Black-Scholes formula : the main ideas %J Annales mathématiques Blaise Pascal %D 1997 %P 93-101 %V 4 %N 1 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U http://archive.numdam.org/item/AMBP_1997__4_1_93_0/ %G en %F AMBP_1997__4_1_93_0
van den Berg, I. P.; Koudjeti, F. From binomial expectations to the Black-Scholes formula : the main ideas. Annales mathématiques Blaise Pascal, Tome 4 (1997) no. 1, pp. 93-101. http://archive.numdam.org/item/AMBP_1997__4_1_93_0/
[1] A nonstandard representation for brownian motion and itô integration. Israel Math. J., 25:15-46, 1976. | MR | Zbl
.[2] Random walks and stochastic differential equations. In F.Diener and M. Diener, Nonstandard Analysis in Practice, pages 71-90. Springer Verlag Universitext, 1995. | MR
.[3] On binomial expectations and option pricing. SOM, RUG, Groningen, The Netherlands, 95A06, 1995.
and .[4] The pricing of options and corporate liabilities. Journal of Political Economy, pages 637-654, May-June 1973. | MR | Zbl
and .[5] Option pricing: a simplified approach. Journal of Financial Economics, 7:229-263, July 1979. | Zbl
, , and .[6] A nonstandard approach to option pricing. Mathematical finance, 1(16):1-38, 1991. | Zbl
, , and .[7] Analyse Non Standard. Enseignement des sciences. Hermann Editeurs, Paris, 1989. | MR | Zbl
and .[8] Security markets, stochastic models. Economic theory, econometrics and mathematical economics. Academic Press Inc., London, UK, 1988. | MR | Zbl
.[9] Martingales and stochastic integrals in the theory of continuous trading. Stochastic processes and their applications, 11:215-260, 1981. | MR | Zbl
and .[10] Elements of external calculus with an application to mathematical finance. Theses on Systems, Organisations and Management. Capelle a/d IJssel, Labyrint Publication, The Netherlands, June 1995.
.[11] Neutrices, external numbers and external calculus. In F. Diener and M. Diener, Nonstandard Analysis in Practice, pages 145-170. Springer Verlag Universitext, 1995. | MR
and .[12] Conversion from nonstandard to standard measure spaces and applications in probability theory. Trans. Amer. Math. Soc., 211:113-122,1975. | MR | Zbl
.[13] Nonstandard analysis: a practical guide with applications, volume 881 of Lecture Notes in Mathematics. Springer verlag, 1981. | MR | Zbl
and .[14] Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society, 83(6):1165-1198, November 1977. | MR | Zbl
.[15] Radically Elementary Probability Theory, volume 117 of Annals of Mathematical Studies. Princeton University Press, 1987. | MR | Zbl
.[16] Non-standard Analysis, 2nd edition. North-Holland Pub. Co., 1974. | MR
.