AnNALES MATHÉMATIQUES BLAISE PASCAL

João B. Prolla
 Samuel Navarro
 Approximation results in the strict topology

Annales mathématiques Blaise Pascal, tome 4, no 2 (1997), p. 61-82
http://www.numdam.org/item?id=AMBP_1997__4_2_61_0
© Annales mathématiques Blaise Pascal, 1997, tous droits réservés.
L'accès aux archives de la revue «Annales mathématiques Blaise Pascal » (http:// math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m b a m}^{\prime}$

Approximation Results in the Strict Topology

João B. Prolla and Samuel Navarro*

Abstract

In this paper we prove results of the Weierstrass-Stone type for subsets W of the vector space V of all continuous and bounded functions from a topological space X into a real normed space E, when V is equipped with the strict topology β. Our main results characterize the β-closure of W when (1) W is β truncation stable; (2) $E=\mathbb{R}$ and W is a subalgebra; (3) $E=\mathbb{R}$ and W is the convex cone of all positive elements of some algebra; (4) W is uniformly bounded; (5) X is a completely regular Hausdorff space and W is convex.

§1. Introduction and definitions

Let X be a topological space and let E be a real normed space. We denote by $B(X ; E)$ the normed space of all bounded E-valued functions on X, equipped with the supremum norm

$$
\|f\|_{X}=\sup \{\|f(x)\| ; x \in X\}
$$

[^0]for each $f \in B(X ; E)$. We denote by $B_{0}(X ; E)$ the subset of all $f \in B(X ; E)$ that vanish at infinity, i.e., those f such that for every $\varepsilon>0$, the set $K=\{t \in X ;\|f(t)\| \geq \varepsilon\}$ is compact (or empty). And we denote by $B_{00}(X ; E)$ the subset of all $f \in B(X ; E)$ which have compact support. We denote by $C(X ; E)$ the vector space of all continuous E-valued functions on X, and set
\[

$$
\begin{aligned}
C_{b}(X ; E) & =C(X ; E) \cap B(X ; E) \\
C_{0}(X ; E) & =C(X ; E) \cap B_{0}(X ; E) \\
C_{00}(X ; E) & =C(X ; E) \cap B_{00}(X ; E)
\end{aligned}
$$
\]

We denote by $I(X)$ the set of all $\varphi \in B(X ; \mathbb{R})$ such that $0 \leq \varphi(x) \leq 1$, for all $x \in X$. We then define

$$
\begin{aligned}
D(X) & =C_{b}(X ; \mathbb{R}) \cap I(X) \\
D_{0}(X) & =B_{0}(X ; \mathbb{R}) \cap I(X)
\end{aligned}
$$

The strict topology β on $C_{b}(X ; E)$ is the locally convex topology determined by the family of seminorms

$$
p_{\varphi}(f)=\sup \{\varphi(x)\|f(x)\| ; x \in X\}
$$

for $f \in C_{b}(X ; E)$, when φ ranges over $D_{0}(X)$. Clearly, given $\varphi \in D_{0}(X)$ there is a compact subset K such that $\varphi(x)<\varepsilon$ for all $x \notin K$. Therefore, our strict topology is coarser than the strict topology introduced by R. Giles [3]. To see that they actually coincide, let $\psi \in B(X ; \mathbb{R})$ be such that, for each $\varepsilon>0$ there is a compact subset K such that $\psi(x)<\varepsilon$ for all $x \notin K$. We may assume $\|\psi\|_{X}<1$. Choose compact sets K_{n} with $\phi=K_{0} \subset K_{1} \subset K_{2} \subset \ldots$ such that $|\psi(x)|<2^{-n}$, for all $x \notin K_{n}$.

Let $\psi_{n} \in B_{0}(X ; \mathbb{R})$ be the characteristic function of K_{n} multiplied by 2^{-n}, i.e., $\psi_{n}(x)=2^{-n}$, if $x \in K_{n}$; and $\psi_{n}(x)=0$ if $x \notin K_{n}$. Let $\varphi=\sum_{n=1}^{\infty} \psi_{n}$. For each $\varepsilon>0$, we claim that the set $K=\{x \in X ; \varphi(x) \geq \varepsilon\}$ is compact (or empty). If $\varepsilon>1$, then $K=\phi$. If $\varepsilon=1$, then $K=K_{1}$, because $\varphi(t)=1$ precisely for $t \in K_{1}$. If $\varepsilon<1$,
let $n \geq 0$ be such that $2^{-(n+1)} \leq \varepsilon<2^{-n}$. Then $K=K_{n+1}$. Hence $\varphi \in D_{0}(X)$. We claim now that $\psi(x) \leq \varphi(x)$ for all $x \in X$. We first notice that $\varphi(x)=0$ if, and only if $x \notin \bigcup_{n=1}^{\infty} K_{n}$. Indeed, if the point $x \notin \bigcup_{n=1}^{\infty} K_{n}$, then $\psi_{k}(x)=0$ for all $n=1,2,3, \ldots$, and so $\varphi(x)=0$. Conversely, if $\varphi(x)=0$, then $\psi_{n}(x)=0$ for all $n=1,2,3, \ldots$ and therefore $x \notin K_{n}$ for all $n=1,2,3, \ldots$ Hence $x \notin \bigcup_{n=1}^{\infty} K_{n}$. Let now $x \in X$. If $\varphi(x)=0$, then $x \notin K_{n}$ for all $n=1,2,3, \ldots$ and so $|\psi(x)|<2^{-n}$ for all $n=1,2,3, \ldots$. Hence $\psi(x)=0$ and so $\psi(x)=\varphi(x)$. Suppose now $\varphi(x)>0$. Then $x \in \bigcup_{n=1}^{\infty} K_{n}$. Let N be the smallest positive integer $n \geq 1$ such that $x \in K_{n}$. If $N=1$, then $x \in K_{1}$ and so $\varphi(x)=1>\psi(x)$. If $N>1$, then $x \in K_{N}$ and $x \notin K_{N-1}$. Hence

$$
\varphi(x)=\sum_{n=N}^{\infty} 2^{-n}=2^{-(N-1)}
$$

and $\psi(x)<2^{-(N-1)}$, since $x \notin K_{N-1}$. Therefore $\psi(x)<\varphi(x)$, whenever $\varphi(x)>0$.
Given any non-empty subset $S \subset C(X ; E)$ we denote by $x \equiv y$ (mod. S) the equivalence relation defined by $f(x)=f(y)$ for all $f \in S$. For each $x \in X$, the equivalence class of $x(\bmod . S)$ is denoted by $[x]_{s}$, i.e.,

$$
[x]_{S}=\{t \in X ; x \equiv t(\bmod . \mathrm{S})\}
$$

For any non-empty subset $K \subset X$ and any $f: X \rightarrow E$, we denote by f_{K} its restriction to K. If $S \subset C(X ; E)$ and $K \subset X$, then for each $x \in K$ one has

$$
[x]_{S_{K}}=K \cap[x]_{S} .
$$

If $S \subset C_{b}(X ; \mathbb{R})$, we define S^{+}by

$$
S^{+}=\{f \in S ; f \geq 0\}
$$

If $S=C_{b}(X ; \mathbb{R})$, we write $S^{+}=C_{b}^{+}(X ; \mathbb{R})$.

Definition 1. Let $S \subset C_{b}(X ; \mathbb{R})$ and let $W \subset C_{b}(X ; E)$ be given. We say that W is β-localizable under S if, for every $f \in C_{b}(X ; E)$, the following are equivalent:
(1) f belongs to the β-closure of W;
(2) for every $\varphi \in D_{0}(X)$, every $\varepsilon>0$ and every $x \in X$, there is some $g_{x} \in W$ such that $\varphi(t)\left\|f(t)-g_{x}(t)\right\|<\varepsilon$ for all $t \in[x]_{s}$.

Remark. Clearly, (1) $\Rightarrow(2)$ in any case. Hence a set W is β-localizable under S if, and only if, $(2) \Rightarrow(1)$. Notice also that if W is β-localizable under S and $T \subset S$, then W is β-localizable under T. Indeed, $T \subset S$ implies $[x]_{S} \subset[x]_{T}$.

Definition 2. We say that a set $W \subset C_{b}(X, E)$ is β-truncation stable if, for every $f \in W$ and every $M>0$, the function $T_{M} \circ f$ belongs to the β-closure of W, where $T_{M}: E \rightarrow E$ is the mapping defined by

$$
\begin{aligned}
& T_{M}(v)=v, \text { if }\|v\|<2 M \\
& T_{M}(v)=\frac{v}{\|v\|} \cdot 2 M, \text { if }\|v\| \geq 2 M
\end{aligned}
$$

Notice that, when $E=\mathbb{R}$, the mapping $T_{M}: \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$
\begin{aligned}
& T_{M}(r)=r, \text { if }\|r\|<2 M \\
& T_{M}(r)=2 M, \text { if } r>2 M \\
& T_{M}(r)=-2 M, \text { if } r>-2 M
\end{aligned}
$$

Remark that, for every $f \in C_{b}(X ; E)$, one has $\left\|T_{M} \circ f\right\|_{X} \leq 2 M$.
Notice that when $W \subset C_{b}^{+}(X ; \mathbb{R})$, then W is β-truncation stable if, for every $f \in W$ and every constant $M>0$, the function $P_{M} \circ f$ belongs to the β-closure of W, where $P_{M}: \mathbb{R} \rightarrow \mathbb{R}_{+}$is the mapping defined by $P_{M}=\max \left(0, T_{M}\right)$, i.e.,

$$
\begin{aligned}
& P_{M}(r)=0, \text { if } r<0 \\
& P_{M}(r)=r, \text { if } 0 \leq r \leq 2 M \\
& P_{M}(r)=2 M, \text { if } r>2 M
\end{aligned}
$$

Definition 3. Let $W \subset C_{b}(X ; E)$ be a non-empty subset. A function $\psi \in D(X)$ is called a multiplier of W if $\psi f+(1-\psi) g$ belongs to W, for each pair, f and g, of elements of W.

Definition 4. A subset $S \subset D(X)$ is said to have property V if
(a) $\psi \in S$ implies $(1-\psi) \in S$;
(b) the product $\varphi \psi$ belongs to S, for any pair, φ and ψ, of elements of S.

Notice that the set of all multipliers of a subset $W \subset C_{b}(X ; E)$ has property V. Indeed, condition (a) is clear and the equation

$$
(\varphi \psi) f+(1-\varphi \psi) g=\varphi[\psi f+(1-\psi) g]+(1-\varphi) g
$$

show that (b) holds as well.
When X is locally compact, R.C. Buck [1] proved a Weierstrass-Stone Theorem for subalgebras of $C_{b}(X ; \mathbb{R})$ equipped with the strict topology. This result was extended and generalized by Glicksberg [4], Todd [7], Wells [8] and Giles [3]. See also Buck [2], where modules are dealt with, and Prolla [5], where the strict topology is considered as an example of weighted spaces.

Our versions of the Weierstrass-Stone Theorem are analogues of Chapter 4 of Prolla [6] for arbitrary subsets of $C(X ; E)$ equipped with the uniform convergence topology, X compact. Whereas the previous results dealt only with algebras or vector spaces which are modules over an algebra, our results now go much further: we are able to cover the case of convex sets (when X is completely regular) or β truncation stable sets (when X is just a topological space). The latter case cover both algebras and the convex cones obtained by taking the set of positive elements
of an algebra.

§2. β-truncation stable subsets

Theorem 1. Let $W \subset C_{b}(X ; E)$ be a β-truncation stable non-empty subset, and let A be the set of all multipliers of W. Then W is β-localizable under A.

Proof. Let $f \in C_{b}(X ; E)$ be given and assume condition (2) of Definition 1, with $S=A$. Let $\varphi \in D_{0}(X)$ and $\varepsilon>0$ be given. Without loss of generality we may assume that φ is not identically zero. Choose $M>0$ so big that $M>\|f\|_{X}, M>\varepsilon$ and the compact set $K=\{t \in X ; \varphi(t) \geq \varepsilon /(6 M)\}$ is non-empty. Consider the nonempty subset $W_{K} \subset C(K ; E)$. Clearly, the set $A_{K} \subset D(K)$ is a set of multipliers of W_{K}. Take a point $x \in K$. By condition (2) applied to $\varepsilon^{2} /(12 M)$, there exists $g_{x} \in W$ such that $\varphi(t)\left\|f(t)-g_{x}(t)\right\|<\varepsilon^{2} /(12 M)$ for all $t \in[x]_{A}$. Let $M \subset D(K)$ be the set of all multipliers of $W_{K} \subset C(K ; E)$. Then M has property V. Now $A_{K} \subset M$ implies

$$
[x]_{M} \subset[x]_{A_{K}}=[x]_{A} \cap K
$$

Hence $\varphi(t)\left\|f(t)-g_{x}(t)\right\|<\varepsilon^{2} /(12 M)$ holds for all $t \in K$ such that $t \in[x]_{M}$. Now $\varphi(t) \geq \varepsilon /(6 M)$ for all $t \in K$ and therefore

$$
\left\|f(t)-g_{x}(t)\right\|<\varepsilon / 2
$$

for all $t \in[x]_{M}$. By Theorem 1, Chapter 4, of Prolla [6] applied to $W_{K} \subset C(K ; E)$ and to the set $M \subset D(K)$, there is $g_{1} \in W$ such that

$$
\left\|f(t)-g_{1}(t)\right\|<\varepsilon / 2
$$

for all $t \in K$. Let $h=T_{M} \circ g_{1}$. By hypothesis, h belongs to the β-closure of W, and there is $g \in W$ such that $p_{\varphi}(h-g)<\varepsilon / 2$. We claim that $p_{\varphi}(f-h)<\varepsilon / 2$. Let
$t \in K$. Then

$$
\left\|g_{1}(t)\right\| \leq\left\|f(t)-g_{1}(t)\right\|+\|f(t)\|<\varepsilon / 2+M<2 M
$$

and so $h(t)=T_{M}\left(g_{1}(t)\right)=g_{1}(t)$. Hence

$$
\begin{aligned}
\varphi(t)\|f(t)-h(t)\| & =\varphi(t)\left\|f(t)-g_{1}(t)\right\| \\
& \leq\left\|f(t)-g_{1}(t)\right\|<\varepsilon / 2
\end{aligned}
$$

Suppose now $t \notin K$. Then

$$
\begin{aligned}
& \varphi(t)\|f(t)-h(t)\|<\frac{\varepsilon}{6 M}\|f(t)-h(t)\| \\
& \quad \leq \frac{\varepsilon}{6 M}\left(\|f\|_{X}+\|h\|_{X}\right)<\frac{\varepsilon}{6 M} \cdot 3 M=\frac{\varepsilon}{2}
\end{aligned}
$$

because $\|h\|_{X} \leq 2 M$, and $\|f\|_{X}<M$.
This establishes our claim that $p_{\varphi}(f-h)<\frac{\varepsilon}{2}$. Hence $p_{\varphi}(f-g)<\varepsilon$, and f belongs to the β-closure of W.

Theorem 2. Let $W \subset C_{b}(X ; E)$ be a β-truncation stable non-empty subset, and let B be any non-empty set of multipliers of W. Then W is β-localizable under B.

Proof. Let A be the set of all multipliers of W. By Theorem 1 the set W is β localizable under A. Now $B \subset A$, so W is also β-localizable under B.

§3. The case of subalgebras

Lemma 1. If $B \subset C_{b}(X ; \mathbb{R})$ is a uniformly closed subalgebra, and $T: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous mapping, with $T(0)=0$, then $T \circ f$ belongs to B, for every $f \in B$.

Proof. Let $f \in B$ and $\varepsilon>0$ be given. Choose $k \geq\|f\|_{x}$. By Weierstrass' Theorem, there exists an algebraic polynomial p such that $|T(t)-p(t)|<\varepsilon$ for all $t \in \mathbb{R}$ with $|t| \leq k$, and we may assume $p(0)=T(0)=0$. Hence, for every $x \in X$, we have $|T(f(x))-p(f(x))|<\varepsilon$, because $|f(x)| \leq k$. Now $p \circ f$ belongs to B, and therefore $T \circ f$ belongs to the uniform closure of B, that is B itself.

Corollary 1. Every subalgebra $W \subset C_{b}(X ; \mathbb{R})$ is β-truncation stable.

Proof. Let $f \in W$ and $M>0$ be given. Let B be the β-closure of W in $C_{b}(X ; \mathbb{R})$. We know that B is then a uniformly closed subalgebra. By Lemma 1 applied to $T=T_{M}$, we see that $T_{M} \circ f$ belongs to the β-closure of W as claimed.

Corollary 2. Every uniformly closed subalgebra of $C_{b}(X ; \mathbb{R})$ is a lattice.

Proof. Since

$$
\begin{aligned}
\max (f, g) & =\frac{1}{2}[f+g+|f-g|] \\
\min (f, g) & =\frac{1}{2}[f+g-|f-g|]
\end{aligned}
$$

it suffices to show that $|f| \in B$, for every $f \in B$. This follows from Lemma 1 , by taking $T: \mathbb{R} \rightarrow \mathbb{R}$ to be the mapping $T(t)=|t|$, for $t \in \mathbb{R}$.

Theorem 3. Every subalgebra $W \subset C_{b}(X ; \mathbb{R})$ is β-localizable under itself.

Proof. Let $f \in C_{b}(X ; \mathbb{R})$ and assume that condition (2) of Definition 1 holds with $S=W$. Notice that for every $x \in X$ one has

$$
[x]_{W}=[x]_{B}
$$

where B is the β-closure of W. Let now

$$
V=\left\{\psi \in B ;\|\psi\|_{X} \leq 1\right\} \text { and } A=\{\psi \in B ; 0 \leq \psi \leq 1\} .
$$

It is easy to see that

$$
[x]_{B}=[x]_{V} \subset[x]_{A},
$$

for each $x \in X$. Notice that, by Corollary 2 , every $\psi \in V$ can be written in the form $\psi=\psi^{+}-\psi^{-}$, with ψ^{+}and ψ^{-}in A. Hence $[x]_{A} \subset[x]_{V}$ is also true. Hence f satisfies condition (2) of Definition 1 with respect to $S=A$. Now A is a set of multipliers of B, and the algebra B, by Corollary 1 , is β-truncation stable. Hence, by Theorem 3, the function f belongs to the β-closure of B, that is B itself. We have proved that f belongs to the β-closure of W. Hence W is β-localizable under $S=W$.

Corollary 3. Let $W \subset C_{b}(X ; \mathbb{R})$ be a subalgebra, and let $f \in C_{b}(X ; \mathbb{R})$ be given. Then f belongs to the β-closure of W if, and only if, the following conditions are satisfied:
(1) for each pair, x and y, of elements of X such that $f(x) \neq f(y)$, there is some $g \in W$ such that $g(x) \neq g(y)$;
(2) for each $x \in X$ such that $f(x) \neq 0$ there is some $g \in W$ such that $g(x) \neq 0$.

Proof. Clearly, if $f \in \bar{W}^{\beta}$, then (1) and (2) are satisfied. Conversely, assume that conditions (1) and (2) are verified.

Let $x \in X$ be given. By condition (1) the function f is constant on $[x]_{W}$. Let $f(x)$ be its value. If $f(x)=0$, then $g_{x}=0$ belongs to W and $f(t)=f(x)=0=g_{x}(t)$ for all $t \in[x]_{W}$. If $f(x) \neq 0$, by condition (2) there is $g \in W$ such that $g(x) \neq 0$. Define $g_{x}=[f(x) / g(x)] g$. Then $g_{x} \in W$ and $g_{x}(t)=f(x)=f(t)$ for all $t \in[x]_{W}$. Hence f satisfies condition (2) of Definition 1 with respect to $S=W$. By Theorem 3 , we conclude that f belongs to the β-closure of W.

Corollary 3 implies the following results.

Corollary 4. Let A be a subalgebra of $C_{b}(X ; \mathbb{R})$ which for each $x \in X$ contains a function g with $g(x) \neq 0$, and let $f \in C_{b}(X ; \mathbb{R})$ be given. Then f belongs to the β-closure of A if, and only if, for each pair, x and y, of elements of X such that $f(x) \neq f(y)$, there is some $g \in A$ such that $g(x) \neq g(y)$.

Corollary 5. Let A be a subalgebra of $C_{b}(X ; \mathbb{R})$ which separates the points of X and for each $x \in X$ contains a function g with $g(x) \neq 0$. Then A is β-dense in $C_{b}(X ; \mathbb{R})$.

Corollary 6. If X is a locally compact Hausdorff space, then $C_{00}(X ; \mathbb{R})$ is β-dense in $C_{b}(X ; \mathbb{R})$.

Lemma 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(t) \geq 0$ for all $t \in \mathbb{R}$ and $f(0)=0$. If $k>0$ and $\varepsilon>0$ are given, there is a real algebraic polynomial p such that $p(t) \geq 0$ for all $0 \leq t \leq k, p(0)=0$ and $|p(t)-f(t)| \leq \varepsilon$ for all $0 \leq t \leq k$.

Proof. Define $g:[0,1] \rightarrow \mathbb{R}$ by setting $g(u)=f(k u)$, for each $u \in[0,1]$. Clearly, $g(u) \geq 0$, for all $0 \leq u \leq 1$ and $g(0)=0$. Now, given $\varepsilon>0$, choose n so that the n-th Bernstein polynomial of g, written $B_{n} g$, is such that

$$
\left|\left(B_{n} g\right)(u)-g(u)\right|<\varepsilon
$$

for all $0 \leq u \leq 1$. For $t \in \mathbb{R}$, define $p(t)=\left(B_{n} g\right)(t / k)$. Since $B_{n} g \geq 0$ in $[0,1]$, it follows that $p(t) \geq 0$, for $t \in[0, k]$. Since $\left(B_{n} g\right)(0)=g(0)=f(0)=0$, we see that $p(0)=0$. It remains to notice that, for any $0 \leq t \leq k$ we have $0 \leq t / k \leq 1$ and

$$
|p(t)-f(t)|=\left|\left(B_{n} g\right)(t / k)-g(t / k)\right|<\varepsilon
$$

Lemma 3. If $A \subset C_{b}(X ; \mathbb{R})$ is a subalgebra, then A^{+}is β-truncation stable.

Proof. Let $f \in A^{+}$and $M>0$ be given. We claim that $P_{M} \circ f$ belongs to the β-closure of A^{+}. Let $k>0$ be such that $0 \leq f(x) \leq k$ for all $x \in X$. Let $\varphi \in D_{0}(X)$ and $\varepsilon>0$ be given. By Lemma 2 above there exists a polynomial $p: \mathbb{R} \rightarrow \mathbb{R}$ such that $p(t) \geq 0$ for all $0 \leq t \leq k, p(0)=0$ and $\left|p(t)-P_{M}(t)\right|<\varepsilon$ for all $0 \leq t \leq k$. Let $x \in X$. Then $\varphi(x) \leq 1$ and so $\varphi(x)\left|p(f(x))-P_{M}(f(x))\right|<\varepsilon$. Now $p \circ f$ belongs to A (since $p(0)=0$) and $p(f(x)) \geq 0$ for all $x \in X$, since $0 \leq f(x) \leq k$. Hence $p \circ f \in A^{+}$. This ends the proof that $P_{M} \circ f$ belongs to the β-closure of A^{+}as claimed.

Theorem 4. If $A \subset C_{b}(X ; \mathbb{R})$ is a subalgebra, then A^{+}is localizable under itself.

Proof. Let $f \in C_{b}(X ; \mathbb{R})$ be given satisfying condition (2) of Definition 1 with respect to $S=A^{+}$. Define $B=\{f \in A ; 0 \leq f \leq 1\}$. It is easy to see that $[x]_{S}=[x]_{B}$, for every $x \in X$. Hence f satisfies condition (2) of Definition 1 with respect to B, which is a set of multipliers of A^{+}. By Lemma 3, the set A^{+}is β-truncation stable. Therefore A^{+}is β-localizable under B, by Theorem 2. Hence f belongs to the β-closure of A^{+}.

Theorem 4. Let $A \subset C_{b}(X ; \mathbb{R})$ be a subalgebra and let $f \in C_{b}^{+}(X ; \mathbb{R})$ be given. Then f belongs to the β-closure of A^{+}if, and only if, the following two conditions hold:
(1) for each pair, x and y, of elements of X such that $f(x) \neq f(y)$, there is some $g \in A^{+}$such that $g(x) \neq g(y)$;
(2) for each $x \in X$ such that $f(x)>0$ there is some $g \in A^{+}$such that $g(x)>0$.

Proof. If f belongs to the β-closure of A^{+}the two conditions (1) and (2) above are easily seen to hold. Conversely, assume that conditions (1) and (2) above hold. Let $x \in X$ be given. By condition (1), the function f is constant on $[x]_{S}$ where $S=A^{+}$. Let $f(x) \geq 0$ be its constant value. If $f(x)=0$, then $g_{x}=0$ belongs to
A^{+}and $f(t)=f(x)=0=g_{x}(t)$ for all $t \in[x]_{s}$. If $f(x)>0$, then by condition (2) there is $g_{x} \in A^{+}$such that $g(x)>0$. Let $g_{x}=[f(x) / g(x)] g$. Then $g_{x} \in A^{+}$and $g_{x}(t)=f(x)=f(t)$ for all $t \in[x]_{s}$. Hence f satisfies condition (2) of Definition 1 with respect to $W=A^{+}$and $S=A^{+}$. By Theorem 4, we conclude that f belongs to the β-closure of A^{+}.

$\S 4$. The case of uniformly bounded subsets

Theorem 5. Let W be a uniformly bounded subset of $C_{b}(X ; E)$ and let A be the set of all multipliers of W. Then W is β-localizable under A.

Proof. Let $f \in C_{b}(X ; E)$ be given and assume that condition (2) of Definition 1 holds with $S=A$. Let $\varepsilon>0$ and $\varphi \in D_{0}(X)$ be given. Choose $M>0$ so big that $M>\|f\|_{X}$ and $M>k=\sup \left\{\|g\|_{X} ; g \in W\right\}$, and the compact set $K=\{t \in X ; \varphi(t) \geq \varepsilon /(2 M)\}$ is non-empty. (Without loss of generality we may assume that φ is not identically zero). Consider the non-empty set $W_{K} \subset C(K ; E)$. Clearly, the set A_{K} is a set of multipliers of W_{K}. Take a point $x \in K$. By condition (2) applied to $\varepsilon^{2} /(2 M)$, there exists some $g_{x} \in W$ such that

$$
\varphi(t)\left\|f(t)-g_{x}(t)\right\|<\varepsilon^{2} /(2 M)
$$

for all $t \in[x]_{A}$. Hence $\left\|f(t)-g_{x}(t)\right\|<\varepsilon$ for all $t \in[x]_{A_{K}}$, since $\varphi(t) \geq \varepsilon /(2 M)$ for all $t \in K$. Let now M be the set of all multipliers of $W_{K} \subset C(K ; E)$. Since $A_{K} \subset M$, it follows that $[x]_{M} \subset[x]_{A_{K}}$ and so $\left\|f(t)-g_{x}(t)\right\|<\varepsilon$ for all $t \in[x]_{M}$. By Theorem 1, Chapter 4 of Prolla [6] there is $g \in W$ such that $\|f(t)-g(t)\|<\varepsilon$ for all $t \in K$. We claim that $p_{\varphi}(t-g)<\varepsilon$. Let $x \in X$. If $x \in K$, then $\varphi(x) \leq 1$ and

$$
\varphi(x)\|f(x)-g(x)\| \leq\|f(x)-g(x)\|<\varepsilon .
$$

If $x \notin K$, then

$$
\varphi(x)\|f(x)-g(x)\| \leq \frac{\varepsilon}{2 M}\left[\|f\|_{X}+\|g\|_{X}\right]<\varepsilon
$$

Hence f belongs to the β-closure of W and so W is β-localizable under A.

Theorem 6. Let W be a uniformly bounded subset of $C_{b}(X ; E)$ and let B be any non-empty set of multipliers of W. Then W is β-localizable under B.

Proof. Let A be the set of all multipliers of W. Since $B \subset A$ and by Theorem $\overline{5}$ the set W is β-localizable under A, it follows that W is also β-localizable under B.ם

Theorem 7. Let A be a non-empty subset of $D(X)$ with property V and let $f \in$ $D(X)$. Then f belongs to the β-closure of A if, and only if, the following two conditions hold:
(1) for every pair of points, x and y, of X such that $f(x) \neq f(y)$, there exists $g \in A$ such that $g(x) \neq g(y)$;
(2) for every $x \in X$ such that $0<f(x)<1$, there exists $g \in A$ such that $0<g(x)<1$.

Proof. It is easy to see that conditions (1) and (2) are necessary for f to belong to the β-closure of A. Conversely, assume that f satisifes conditions (1) and (2).

Let $\varphi \in D_{0}(X)$ and $\varepsilon>0$ be given. Without loss of generality we may assume that φ is not identically zero. Choose $\delta>0$ so small that $2 \delta<\varepsilon$ and the compact set $K=\{t \in X ; \varphi(t) \geq \delta\}$ is non-empty. Clearly, A_{K} has property V. Since conditions (1) and (2) hold, we may apply Theorem 1, Chapter 8, Prolla [6] to conclude that f_{K} belongs to the uniform closure of A_{K}. Hence there is some $g \in A$ such that $|f(t)-g(t)|<\varepsilon$ for all $t \in K$. We claim that $p_{p}(f-g)<\varepsilon$. Let $x \in X$. If $x \in K$, then $\varphi(x) \leq 1$ and $\varphi(x)|f(x)-g(x)| \leq|f(x)-g(x)|<\varepsilon$.

If $x \notin K$, then $\varphi(x)<\delta$ and

$$
\varphi(x)|f(x)-g(x)| \leq \delta\left[\|f\|_{X}+\|g\|_{X}\right] \leq 2 \delta<\varepsilon
$$

Hence f belongs to the β-closure of A.

Remark. We say that a subset $A \subset D(X)$ has property $V N$ if $f g+(1-f) h \in A$
for all $f, g, h \in A$. Clearly, if A has property $V N$ and contains 0 and 1 , then A has property V.

Corollary 6. Let A be a non-empty subset of $D(X)$ with property V, and let W be its β-closure. Then W has property $V N$ and W is a lattice.

Proof. (a) W has property $V N$: Let f, g, φ belong to W, and let $h=\varphi f+(1-\varphi) g$. Assume $h(x) \neq h(y)$. Then at least one of the following three equalities is necessarily false: $\varphi(x)=\varphi(y), f(x)=f(y)$ and $g(x)=g(y)$. Since φ, f and g belong all three to W, there exists $a \in A$ such that $a(x) \neq a(y)$. Hence h satisfies condition (1) of Theorem 7. Suppose now that $0<h(x)<1$. If $0<\varphi(x)<1$, then $0<a(x)<1$ for some $a \in A$, because φ belongs to the β-closure of A. Assume that $\varphi(x)=0$. Then $h(x)=g(x)$ and so $0<g(x)<1$. Since $g \in W$, it follows that $0<a(x)<1$ for some $a \in A$. Similarly, if $\varphi(x)=1$ then $h(x)=f(x)$ and so $0<f(x)<1$. Since $f \in W$, there is $a \in A$ such that $0<a(x)<1$. Hence h satisfies condition (2) of Theorem 7. By Theorem 7 above, the function h belongs to W.
(b) W is lattice: Let f and g belong to W. Let $h=\max (f, g)$. Let x and y be a pair of points of X such that $h(x) \neq h(y)$. Then at least one of the two equalities $f(x)=f(y), g(x)=g(y)$ must be false. Since f and g both belong to the β-closure of A, there exists $a \in A$ such that $a(x) \neq a(y)$. On the other hand, let $x \in X$ be such that $0<h(x)<1$. If $f(x) \geq g(x)$, then $h(x)=f(x)$ and so $0<f(x)<1$. Since $f \in W$, there exists $a \in A$ such that $0<a(x)<1$. Assume now $f(x)<g(x)$. Then $h(x)=g(x)$ and so $0<g(x)<1$. Since $g \in W$, there exists $a \in A$ such that $0<a(x)<1$. By Theorem 7 above, the function h belongs to W. Similarly, one shows that the function $\min (f, g)$ belongs to W.

Corollary 7. Let A be a β-closed non-empty subset of $D(X)$ with property V. Then A has property $V N$ and A is a lattice.

Proof. Immediate from Corollary 6.
ㅁ

§5. The case of convex subsets

In this section we suppose that X is a completely regular Hausdorff space. We denote its Stone-Čech compactification by βX, and by $\beta: C_{b}(X ; \mathbb{R}) \rightarrow C(\beta X ; \mathbb{R})$ the linear isometry which to each $f \in C_{b}(X ; \mathbb{R})$ assigns its (unique) continuous extension to βX. Since β is an algebra (and lattice) isomorphism, the image $\beta(A)$ of any subset $A \subset C_{b}(X, \mathbb{R})$ with property V is contained in $D(\beta X)$ and has property V. If $B=\beta(A)$, then for each $x \in X$ one has

$$
[x]_{A}=[x]_{B} \cap X
$$

If Y denotes the quotient space of βX by the equivalence relation $x \equiv y$ if and only if $\varphi(x)=\varphi(y)$, for all $\varphi \in B$, then Y is a compact Hausdorff space.

If $x \in X$ and $K_{x} \subset X$ is a compact subset disjoint from $[x]_{A}$, then $\pi\left(K_{x}\right)$ is a compact subset in Y which does not contain the point $\pi(x)$. (Here we have denoted by π the canonical projection $\pi: \beta X \rightarrow Y$. Indeed, if $\pi(x) \in \pi\left(K_{x}\right)$, then $\pi(x)=\pi(y)$ for some $y \in K_{x}$. Now $y \in[x]_{B}$ because that $y \in[x]_{A}$. But $K_{x} \cap[x]_{A}=\phi$, and we have reached a contradiction. Hence $\pi(x) \notin \pi\left(K_{x}\right)$. We will apply these remarks in the proof of the following lemma.

Lemma 4. Let $A \subset D(X)$ be a subset with property V and containing some constant $0<c<1$. Let $x \in X$ and let $K_{x} \subset X$ be a compact subset, disjoint from $[x]_{A}$. Then, there exists an open neighborhood $W(x)$ of $[x]_{A}$ in X, disjoint from K_{x} and such that given $0<\delta<1$ there is $\varphi \in A$ such that
(1) $\varphi(t)<\delta$, for all $t \in K_{x}$;
(2) $\varphi(t)>1-\delta$, for all $t \in W(x)$.

Proof. Let $N(x)$ be the complement of K_{x} in βX. Then $N(x)$ is an open neigh-
borhood of $[x]_{A}$ in βX. We know that $\pi\left(K_{x}\right)$ is a compact subset of Y which does not contain the point $y=\pi(x)$. Let $f \in C(Y ; \mathbb{R})$ be a mapping such that $0 \leq f \leq 1, f(y)=0$ and $f(t)=1$ for all $t \in \pi\left(K_{x}\right)$. Let $g=f \circ \pi$. By Theorem 1, Chapter 8, Prolla [6], the function g belongs to the uniform closure of B in $D(\beta X)$. Notice that $a(x)=0$ and $g(u)=1$, for all $u \in K_{x}$. Define $N(x)=\{t \in \beta X ; g(t)<1 / 4\}$. Clearly, $[x]_{B} \subset N(x)$, since $g(t)=0$ for all $t \in[x]_{B}$. It is also clear that $N(x)$ is disjoint from K_{x}. Let us define $W(x)=N(x) \cap X$. Then $W(x)$ is an open neighborhood of $[x]_{A}$ in X, which is disjoint from K_{x}.

Given $0<\delta<1$, let p be a polynomial determined by Lemma 1, Chapter 1, Prolla [6], applied to $a=1 / 4$ and $b=3 / 4$, and $\varepsilon=\delta / 2$. Let $h(t)=p(g(t))$, for all $t \in \beta X$. Since \bar{B} has property V, it follows that $h \in \bar{B}$. If $t \in K_{x}$, then $g(t)=1$ and so $h(t)<\delta / 2$. If $t \in W(x)$, then $g(t)<1 / 4$ and so $h(t)>1-\delta / 2$. Choose now $\psi \in B$ with $\|\psi-h\|_{X}<\delta / 2$, and let $\varphi \in A$ be such that $\beta(\varphi)=\psi$. Then $\varphi \in A$ satisfies conditions (1) and (2).

Theorem 8. Let $W \subset C_{b}(X ; E)$ be a non-empty subset and let A be a set of multipliers of W which has property V and contains some constant $0<c<1$. Then W is β-localizable under A.

Proof. Assume that condition (2) of Definition 1 is true with $S=A$. For each $x \in X$, there is some $g_{x} \in W$ such that, for all $t \in[x]_{A}$, one has $\varphi(t)\left\|f(t)-g_{x}(t)\right\|<$ $\varepsilon / 2$. Consider the compact subset K_{x} of X defined by

$$
K_{x}=\left\{t \in X ; \varphi(t)\left\|f(t)-g_{x}(t)\right\| \geq \frac{\varepsilon}{2}\right\} .
$$

Clearly, K_{x} is disjoint from $[x]_{A}$. Now for each $x \in X$, select an open neighborhood $W(x)$ of $[x]_{A}$, disjoint from K_{x}, according to Lemma 4.

Select and fix a point $x_{1} \in X$. Let $K=K_{x_{1}}$. By compactness of K, there exists a finite set $\left\{x_{2}, \ldots, x_{m}\right\} \subset K$ such that

$$
K \subset W\left(x_{2}\right) \cup W\left(x_{3}\right) \cup \ldots \cup W\left(x_{m}\right)
$$

Let $k=\sum_{i=1}^{m} p_{\varphi}\left(f-g_{x_{i}}\right)$ and let $0<\delta<1$ be so small that $\delta k<\varepsilon / 2$.
By Lemma 4, there are $\varphi_{2}, \ldots, \varphi_{m} \in A$ such that
(a) $\varphi_{i}(t)<\delta$, for all $t \in K_{x_{i}}$;
(b) $\varphi_{i}(t)>1-\delta$, for all $t \in W\left(x_{i}\right)$
for $i=2, \ldots, m$. Define

$$
\begin{aligned}
& \psi_{2}=\varphi_{2} \\
& \psi_{3}=\left(1-\varphi_{2}\right) \varphi_{3}
\end{aligned}
$$

$$
\psi_{m}=\left(1-\varphi_{2}\right)\left(1-\varphi_{3}\right) \ldots\left(1-\varphi_{m-1}\right) \varphi_{m}
$$

Clearly, $\psi_{i} \in A$ for all $i=2, \ldots, m$. Now

$$
\psi_{2}+\ldots+\psi_{j}=1-\left(1-\varphi_{2}\right)\left(1-\varphi_{3}\right) \ldots\left(1-\varphi_{j}\right)
$$

for all $j \in\{2, \ldots, m\}$, can be easily seen by induction. Define

$$
\psi_{1}=\left(1-\varphi_{2}\right)\left(1-\varphi_{3}\right) \ldots\left(1-\varphi_{m}\right)
$$

then $\psi_{1} \in A$ and $\psi_{1}+\psi_{2}+\ldots+\psi_{m}=1$.
Notice that
(c) $\psi_{i}(t)<\delta$ for all $t \in K_{x_{i}}$ for each $i=1,2, \ldots, m$. Indeed, if $i \geq 2$ then (c) follows from (a). If $i=1$, then for $t \in K$, we have $t \in W\left(x_{j}\right)$ for some $j=2, \ldots, m$. By (b), one has $1-\varphi_{j}(t)<\delta$ and so

$$
\psi_{1}(t)=\left(1-\varphi_{j}(t)\right) \prod_{i \neq j}\left(1-\varphi_{i}(t)\right)<\delta
$$

Let us write $g_{i}=g_{x_{i}}$ for $i=1,2, \ldots, m$.
Define $g=\psi_{1} g_{1}+\psi_{2} g_{2}+\ldots+\psi_{m} g_{m}$.
Notice that

$$
\begin{aligned}
g= & \varphi_{2} g_{2}+\left(1-\varphi_{2}\right)\left[\varphi_{3} g_{3}+\left(1-\varphi_{3}\right)\left[\varphi_{4} g_{4}+\ldots+\right.\right. \\
& \left.\left.+\left(1-\varphi_{m-1}\right)\left[\varphi_{m} g_{m}+\left(1-\varphi_{m}\right) g_{1}\right] \ldots\right]\right] .
\end{aligned}
$$

Hence $g \in W$. Let $x \in X$ be given. Then

$$
\begin{aligned}
\varphi(x)\|f(x)-g(x)\| & =\varphi(x)\left\|\sum_{i=1}^{m} \psi_{i}(x)\left(f(x)-g_{i}(x)\right)\right\| \\
& \leq \varphi(x)\left\|\sum_{i=1}^{m} \psi_{i}(x)\right\|\left(f(x)-g_{i}(x)\right) \|
\end{aligned}
$$

Define $I=\left\{1 \leq \tau \leq m ; x \notin K_{x_{i}}\right\} ; J=\left\{1 \leq i \leq m ; x \in K_{x_{i}}\right\}$.
If $i \in I$, then $x \notin K_{x_{i}}$ and

$$
\varphi(x)\left\|f(x)-g_{i}(x)\right\|<\frac{\varepsilon}{2}
$$

and therefore

$$
(*) \sum_{i \in I} \varphi(x) \psi_{i}(x)\left\|f(x)-g_{i}(x)\right\| \leq \frac{\varepsilon}{2} \sum_{i \in I} \psi_{i}(x) \leq \frac{\varepsilon}{2} .
$$

If $i \in J$, then by (c), $\psi_{i}(x)<\delta$ and so

$$
(* *) \sum_{i \in J} \varphi(x) \psi_{i}(x)\left\|f(x)-g_{i}(x)\right\| \leq \delta k<\frac{\varepsilon}{2}
$$

From (*) and (**) we get $\varphi(x)\|f(x)-q(x)\|<\varepsilon$.

Theorem 9. Let $W \subset C_{b}(X ; E)$ be a non-empty convex subset and let A be the set of all multipliers of W. Then W is β-localizable under A.

Proof. The set A has property V and, since W is convex, every constant $0<c<1$ belongs to A.

Theorem 10. Let $W \subset C_{b}(X ; E) b$ a non-empty convex subset and let B be any non-empty set of multipliers of W. Then W is β-localizable under B.

Proof. Similar to that of Theorem 6, using now Theorem 9 instead of Theorem 5.

Corollary 8. Let $W \subset C_{b}(X ; E)$ be a non-empty convex subset such that the set of all multipliers of W separates the points of X. Then, for each $f \in C_{b}(X ; \mathbb{R})$ the following are equivalent:
(1) f belongs to the β-closure of W;
(2) for each $\varepsilon>0$ and each $x \in X$, there is some $g \in W$ such that $\|f(x)-g(x)\|<\varepsilon$.

Proof. Clearly, (1) \Rightarrow (2). Suppose now that (2) holds. Let $\varphi \in D_{0}(X), \varepsilon>0$ and $x \in X$ be given. Notice that $[x]_{W}=\{x\}$. If $\varphi(x)=0$, for any $g \in W$ one has $\varphi(x)\|f(x)-q(x)\|=0<\varepsilon$. If $\varphi(x)>0$, by (2) there is $g \in W$ such that $\|f(x)-g(x)\|<\varepsilon / \varphi(x)$. Hence $\varphi(x)\|f(x)-q(x)\|<\varepsilon$, and by Theorem $9,(1)$ is true.

Corollary 9. Let $S \subset X$ be a non-empty closed subset and let $V \subset E$ be a non-empty convex subset. Let $W=\left\{g \in C_{b}(X ; E) ; g(S) \subset V\right\}$. Then, for each $f \in C_{b}(X ; E)$ the following are equivalent:
(1) f belongs to the β-closure of W;
(2) for each $x \in S, f(x)$ belongs to the closure of V in E

Hence, $\bar{W}^{\beta}=\left\{f \in C_{b}(X ; E) ; f(S) \subset \bar{V}\right\}$, where \bar{V} is the closure of V in E.

Proof. Clearly, (1) $\Rightarrow(2)$. Conversely, assume that (2) holds. Clearly, W is a convex set such that $D(X)$ is the set of all multipliers of W. Since X is a completely regular Hausdorff space, $D(X)$ separates the points of X. Let $\varepsilon>0$ and $x \in X$ be given. If $x \in S$ there is $v \in V$ such that $\|f(x)-v\|<\varepsilon$, and the constant mapping on X whose value is v belongs to W and $g(x)=v$. If $x \notin S$, choose $\zeta \in C_{b}(X ; \mathbb{R}), 0 \leq \varphi \leq 1, \varphi(t)=1$ for all $t \in S$ and $\varphi(x)=0$; and let $g \in C_{b}(X ; E)$
be defined by $g=\varphi \otimes v_{0}+(1-\varphi) \otimes f(x)$, where $v_{0} \in V$ is chosen arbitrarily. Then $g(t)=v_{0}$ for all $t \in S$, and therefore $g \in W$, and $g(x)=f(x)$. Hence (2) of Corollary 8 is verified and so f belongs to the β-closure of W.

Corollary 10. Let $W \subset C_{b}(X ; E)$ be a non-empty convex subset such that the set of all multipliers of W separates the points of X and, for each $x \in X$, the set $W(x)=\{g(x) ; g \in W\}$ is dense in E. Then W is β-dense in $C_{b}(X ; E)$.

Proof. Apply Corollary 8.

Corollary 11. The vector subspace $W=C_{b}(X ; \mathbb{R}) \otimes E$ is β-dense in $C_{b}(X ; E)$.

Proof. The set A of all multipliers of W is $D(X)$, and $W(x)=E$, for each $x \in X$. It remains to apply Corollary 10.

Corollary 12. If X is a locally compact Hausdorff space, then $C_{00}(X ; \mathbb{R}) \otimes E$ is β-dense in $C_{b}(X ; E)$.

Proof. Let $W=C_{00}(X ; \mathbb{R}) \otimes E$. As in the previous corollary, the set A of all multipliers of W is $D(X)$, and for each $x \in X, W(x)=E$.

Theorem 11. Let $A \subset C_{b}(X ; \mathbb{R})$ be a subalgebra and let $W \subset C_{b}(X ; E)$ be a vector subspace which is an A-module, i.e., $A W \subset W$. Then W is β-localizable under A.

Proof. Let $f \in C_{b}(X ; E)$ be given. Assume that condition (2) of Definition 1 holds with $S=A$. Without loss of generality we may assume that A is β-closed and contains the constants. Let M be the set of all multipliers of W. We claim that, for each $x \in X$, one has $[x]_{M} \subset[x]_{A}$. Indeed, let $t \in[x]_{M}$ and let $\varphi \in A$. If $\varphi=0$, then $\varphi \in M$ and $\varphi(t)=\varphi(x)$. Assume $\varphi \neq 0$. Write $\varphi=\varphi^{+}-\varphi^{-}$,
where $\varphi^{+}=\max (\varphi, 0)$ and $\varphi^{-}=\max (-\varphi, 0)$. By Corollary $2, \S 3$, both φ^{+}and φ^{-} belong to A. If $\varphi^{+}=0$, then φ^{+}belongs to M and $\varphi^{+}(t)=\varphi^{+}(x)$. If $\varphi^{+} \neq 0$, let $\psi=\varphi^{+} /\left\|\varphi^{+}\right\|_{x}$. Now ψ belongs to A and $0 \leq \psi \leq 1$. Hence $\psi \in M$ and therefore $\psi(t)=\psi(x)$. Consequently, one has $\varphi^{+}(t)=\varphi^{+}(x)$. Similarly, one proves that $\varphi^{-}(t)=\varphi^{-}(x)$. Hence $\varphi(t)=\varphi(x)$. This ends the proof that $[x]_{M} \subset[x]_{A}$ for all $x \in X$. Hence condition (2) of Definition 1 is verified with $S=M$. By Theorem 9 , W is β-localizable under M. Hence f belongs to the β-closure of W.

Corollary 13. Let $W \subset C_{b}(X ; E)$ be a vector subspace, and let

$$
A=\left\{\psi \in C_{b}(X ; \mathbb{R}) ; \psi g \in W \text { for all } g \in W\right\}
$$

Then W is β-localizable under A.

Proof. Clearly A is a subalgebra of $C_{b}(X ; \mathbb{R})$ and W is an A-module.

References

[1] R.C. Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104.
[2] R.C. Buck, Approximation properties of vector-valued functions, Pacific J. Math. 53 (1974), 85-94.
[3] R. Giles, A generalization of the strict topology, Trans. Amer. Math. Soc. 161 (1971), 467-474.
[4] I. Glicksberg, Bishop's generalized Stone-Weierstrass Theorem for the strict topology, Proc. Amer. Math. Soc. 14 (1963), 329-333.
[5] J.B. Prolla, Approximation of Vector Valued Function. North-Holland Publ. Co., Amsterdam, 1977.
[6] J.B. Prolla, Weierstrass-Stone, the Theorem. Verlag Peter Lang, Frankfurt am Main, 1993.
[7] C. Todd, Stone-Weirstrass theorems for the strict topology, Proc. Amer. Math. Soc. 16 (1965), 654-659.
[8] J. Wells, Bounded continuous vector-valued functions on a locally compact space, Michigan Math. J. 12 (1965), 119-126.

João B. Prolla IMECC-UNICAMP Caixa Postal 6065 13083-970 Campinas SP Brasil

Samuel Navarro
Departamento de Matematicas
Universidad de Santiago
Casilla 5659 C-2
Santiago
Chile

[^0]: *Partially supported by FONDECYT grant 1950546 and DICYT-USACH

