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1 Introduction

The development of a non-Archimedean (especially, p-adic) mathematical
physics [20]-[22], [1]-[4], {6], [8]-[13] induced some new mathematical struc-
tures over non-Archimedean fields. In particular, probability theory with
p-adic valued probabilities was developed in [11], [8], (4~1.

The first theory with p-adic probabilities was the frequency theory in
which probabilities were defined as limits of relative frequencies vN = r~/N
in the p-adic topology2.This frequency probability theory was a natural ex-
tension of the frequency probability theory of R. von Mises [15], [16].

The next step was the creation of p-adic probability formalism on the
basis of a theory of p-adic valued probability measures. It was natural to do
this by following the fundamental work of A.N. Kolmogorov [14] in which
he had proposed the measure-theoretical axiomatics of probability theory.
Kolmogorov used properties of the frequency probability (non-negativity,
normalization by 1 and additivity) as the basis of his axiomatics. Then he
added the technical condition of u-additivity for using Lebesgue’s integra-
tion theory. In works [11],[8] we tried to follow A.N. Kolmogorov. p-adic
frequency probability has also the properties of additivity. it is normalized
by 1 and the set of possible values of this probability is the whole field of
p-adic numbers Qp. Thus it was natural to define p-adic probability as a
Qp-valued measure normalized by 1. .

Ip-adic probability theory appeared in connection with a model of quantum mechanics
with p-adic valued wave functions [12]. The main task of this probability formalism was
to present the probability interpretation for p-adic valued wave functions.

2The following trivial fact is the cornerstone of this theory: the relative frequencies
belong to the field of rational numbers Q; we can study their behaviour not only in the
real topology on Q, but also in the p-adic topologies on Q.
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[18], [19]. Therefore the creators of non-Archimedean integration theory
(A. Monna and T. Springer [17]) did not try to develop abstract measure
theory, but they proposed an integration formalism via Bourbaki based on
integrals of continuous functions. This integration theory has been used for
creating p-adic probability theory in the measure-theoretical framework [8].
The main disadvantage of this probability model is the strong connection
with the topological structure of a sample spaced

An abstract theory of non-Archimedean measures has been developed in
[19]. The basic idea of this approach is to study measures defined on rings
which in principle cannot be extended to measures on a-rings. This gives
the possibility for constructing non-discrete valued measures with values in
non-Archimedean fields (and, in particular, in fields of p-adic numbers). On
the other hand, the condition of continuity for measures in [19] implies the
03C3-additivity in all natural cases.

In this paper we develop a p-adic probability formalism based on mea-
sure theory of (19~ . By probabilistic reasons we use the special case of this
measure theory: (1) measures are defined on algebms (such measures have
some special properties); (2) measures take values in fields of p-adic num-
bers (here values of probabilities can be approximated by rational relative
frequencies).

However, probabilistic applications stimulate also the development of the
general theory of non-Archimedean measures defined on rings. We prove the
formula of the change of variables for these measures and use this formula
for developing the formalism of conditional expectations for p-adic valued
random variables.

2 Measures

Everywhere below K denotes a complete non-Archimedean field, R denotes
the field of real numbers. The valuations on these fields are denoted by the
same symbol)-). We set UR(a) = {2? E A’: R}, a 6 K, jR R, R > 0.
By definition these are balls in K.

Let X be an arbitrary set and let ?t be a ring of subsets of X. The pair
(X, ~Z) is called a measurable space. The ring ?Z is said to be sepamting if
for every two distinct elements, r and y, of X there exists an A E R such

3This is quite similar to the old probability formalisms of Frechet [6] and Cramer [5]
in which the topological structure of the sample space played the important role.
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that x e A, y ~ A. We shall consider measurable spaces only over separating
rings which cover the set X. 

’

Every ring R can be used as a base for the zero-dimensional topology
which we shall call the R-topology. This topology is Hausdorff iff R is
separating.

Throughout this section, R, is a separating ring of a set X.
A subcollection S of R is said to be shrinking if the intersection of any

two elements of S contains an element of S. If S is shrinking, and if f is a
map 7~ 2014~ K or 7~ 2014~ R, we say that limAEs I{A) = 0 if for every e > 0,
there exists an Ao E S such that e for all A E S, A c Ao.

A measure on R is a map J.L : R --i K with the properties: (i) is

additive; (ii) for all A E R, IIAII = B 6 7~, B c ~4}  oo; (iii)
if S C R is shrinking and has empty intersection, then limAEs = 0.

We call these conditions respectively additivity, boundedness, continuity.
The latter condition is equivalent to the following: limAEs = 0 for ev-

ery shrinking collection S with empty intersection. Further, we shall briefly
discuss the main properties of measures, see [19] for the details.

For any set D, we denote its characteristic function (the indicator)
by the symbol iD. For f : X ~ K and 03C6 : X - [0,~), put =

supx~X |f(x)|03C6(x). We set Nu(x) = infU~R,x~U ~U~  for x E X. Then
~A~  = ~iA~N  for any A E R. We set ~f~  = ~f~N .

A step function (or R-step function) is a function f : X --~ K of the
form f(x) = ~Nk=1 ckiAk(x) where ck E K and Ak E R, Ak fl Al = 0, d.
We set for such a function fx = ck (Ak). Denote the space
of all step functions by the symbol S(X). The integral f ~ Ix f(x) (dx) is
the linear functional on S(X) which satisfies the inequality

I x  ~f~ . (1)

A function f : X --~ K is called p-integrable if there exists a sequence
of step functions such that limn~~ ~f - fn~  = 0. The -integrable
functions form a vector space Li(X, ~n) (and S(X) C Li(X, ~c)). The integral
is extended from S(X) on Ll (X, by continuity. The inequality (1) holds
for f E 

Let = {~4 : : A c X, iA E L1(X, u)}. This is a ring. Elements of
this ring are called p,-measurable sets. By setting (A) = fX iA(x) (dx) the
measure  is extended to a measure on R . This is the maximal extension
of ~c, i.e., if we repeat the previous procedure starting with the ring R~,, we
will obtain this ring again.
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Set XE = {~ E X = {~c E X : = 0}, X+ _
X B Xo. Every A C Xo belongs to We call such sets -negligible.

Now we construct product measures. Let =1, 2, ..., n, be measures
on (separating) rings Rj of subsets of sets Xj. The finite unions of the sets

E Rj, form a (separating) ring Rl x ~ .. x R", of Xl x ~ ~ ~ x Xn.
Then there exists a unique measure 1 x ... x n on R1 x ... x Rn such
that 1 x ... x n(A1 x ... x An) = 1(A1) x ... x We have

..., ~~) = x ... x (2)

Let X be a zero-dimensional topological space4. We denote the ring
of clopen (i.e., at the same time open and closed) subsets of X by the
symbol B(X) (in fact, this is an algebra). We denote the space of continuous
bounded functions f : J~ 2014~ ~ by the symbol Cb(X). We use the norm
~f~~ = sUPzeX on this space.

First we remark that if X is compact and R = B(X ) then the condition
(iii) in the definition of a measure is redundant. If X is not compact then
there exist bounded additive set functions which are not continuous.

Let X be zero-dimensional N-compact topological space,i.e., there ex-
ists a set S such that X is homeomorphic to a closed subset of NS. We
remark that every product of N-compact spaces is N-compact; every closed
subspace of an N-compact space is N-compact. Then every bounded 03C3-

additive function  : B(X) ~ K is a measure. On the other hand, if X
is a zero-dimensional space such that every bounded u-additive function

B(X ) --~ K is a measure, then X is N-compact.
In the theory of integration a crucial role is played by the R -topology,

i.e., the (zero-dimensional) topology that has as a base. Of course, R -
topology is stronger that R-topology. Every -negligible set is R -clopen.
The following two theorems [19] will be important for our considerations.

Theorem 2.1. (i) If  is a measure on R, then N  is R-upper semi-
continuous, (hence, R -upper semicontinuous) and for every A E R  and
E > 0 the set Ae = A n Xe is R -compact.

(ii) Conversely, let : R - K be additive. Assume that there exists an
R-upper semicontinuos 03C6 : X -; [0,~) such that | ~ supx~A 03C6(x), A E
R, and {~ E A : ~(a:) > E} is R-compact (A E R, E > 0). Then is a
measure and N~  ~.

Theorem 2.2. Let ~ : R --~ K be a measure. A function f : X - K is
-integrable iff it has the following two properties : (1) f is R -continuous;
4We consider only Hausdorff spaces.
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(2) for every E > 0, the set tx : : > ~} is R -compact.
We shall also use the following fact.
Theorem 2.3. Let f E L1(X, ) and let

= 0 for every A E R. (3)

Then supp f C Xo.
Proof. Let us assume that f satisfies (3) and there exists xo E X+

(hence N (x0) = a > 0) such that |f(x0)| = c > 0. Let be a sequence

of ~step functions which approximates f. For every E > 0 there exist NE
such that -  aE for all k > N~. In particular, this implies that

|fk(x0)| >_ G ‘ ~, k > N~. Then we have

0394B,k = | ~B fk(x) (dx)| = | ~B fk(x) (dx) - ~B f(x) (dx)|  03B1~, B ~ R.

Let

fk(x) = 03A3 ckjiBkj (x), ekj E K, Bkj E Ra Bkj n Bki = Ø, z ~ j,
j

and let xo E Bkjo. If B c Bkjo, B E ?Z, then 
 03B1~. On the other hand, as ~Bkj0~  >_ a, then for every

b > 0, there exists B C Bkjo, B E R, such that > (a - b). Thus we
obtain for this B: 0394B,k >- (a - 6) (c - E). By choosing E > 0, b > 0. such that

(a - b)(c - e) > 03B1~, we arrive to a contradiction.
Let (Xj, Rj), j =1, 2, be two measurable spaces. A function f 

X2 such that f -1 (R2) c Rl is said to be measurable ((R1, R2)-measurable).
We shall use the following simple fact.

Lemma 2.1. Let (Xj,Rj),j = 1, 2, be measurable spaces and let f :

X i --~ X2 be measurable. If S is shrinking in R2 then f ~~ (S) is shrinking
in R1. If S has empty intersection, then f -1(S) has also empty intersection.

Lemma 2.2. Let (Xj, = 1, 2, be measurable spaces and let ~ :

X1 ~ X2 be a measurable function. Then, for every measure  : R1 - K, .

the function ~ : R2 ~ K defined by the equality ~(A) = is

a measure on R2 and, for every R2-continuous function, h : X 2 ~ K the

following inequality holds: 
.

~h~ ~ ~ ~h ° ~~ . (4)

Proof. We have for every A E R2,

~A~ ~ = B E C A} ~ ~~-1(A)~   ~. (5)
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Thus ~ is bounded. We now prove that is continuous on R2. Let S be
shrinking in R2 which has the empty intersection. By Lemma 2.1 ~‘ 1 (S)
is shrinking in Ri which has also the empty intersection. By (5) we obtain
that limAes = 0.

We prove inequality (4). Let h : X2 -~ K be R2-continucus. We wish to
prove that (b) _ ~h ° ~~  for all b E X2. So we choose b E X2 with

0. Then the set Cb = {y E X2 _ is R2-open. Hence
there is a B E R2 with b E B C Cb. Then

sup sup I(h ° ~)(x)|Nu(x)  ~h ° ~~ .
x~~-1(B) x~~-1(B)

Theorem 2.4. (Change of variables) Let = 1, 2, be mea-

surable spaces and let y : : X2 be a measurable function, and let
p, : : Ri ~ K be a measure. If f : X2 ~ K is an R2-continuous func-
tion such that the function f o ~ belongs to L1 (X1, ), then f E Ll (X2, ~)
and

~X1f(~(x)) (dx) = ~X2f(y) ~(dy). (6)
Proof. It suffices to prove that for every E > 0 there exists a R2-step

function g such that p f - f and ~ f. By (4) the first
follows from the second. So we fix f > 0.

By Theorem 2.2 the set

A = ~x E Xl : : I(f ° > E~

is Ri-compact and therefore contained in an element of R1. But N  is
bounded on every element of R1, so Nu is bounded on A. We choose 6 > 0
so that

e for all x E A.

As A is compact, f (r~(A)) is also compact. We can cover f (~(A)) by disjoint
closed balls of radius 6 : C where ao is chosen

to be 0 in order to obtain:

 It for t E = o,1, ..., N. (7)

For each n, Cn = {C E R2 C C is a collection of open sets

covering the compact set ~(A) ~ f-1(U03B4(03B1n)). Thus, for each n there is a
Cn E Cn such that ~(A) tl C Cn. We now have

Co, ..., Cty E R2, (8)
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Cn C f 1 (Ua(an)), n = o,1, ..., N, (9)

~(A) C Co u ... u CN. (10)
Put g(x) = Then g is a R2-step function. We wish to

show that, for all a E X,

LB(a) = i(f ° ~)(a) - (9 ° ~)(a)1N’~(a) _ ~.

Thus, take a EX:
(1) If a E A, then there is a unique n with ~(a) E Cn. Then =

|(f o 7?)(0) - 03B1n|N (a)  e.

(2) If a g A, but E Cn for some n, then by (7) we obtain that
= I(.f °’~)(a) -  i(f ° n)(a)!~~(a)  E.

(3) If a ¢ C0~...~CN, then = o. Thus 
e (as a ~ A).

Open problem. To -find a condition for functions f which is weaker
than continuity, but implies the formula of the change of variables.

Further we shall obtain some properties of measures which are specific
for measures defined on algebras5.

Throughout this paper, A is a separating algebra of a set X. First we
remark that if we start with a measure  defined on the algebra A then the
system A  of -integrable sets is again an algebra.

Proposition 2.1. Let p : A --~ K be a measure. Then for each E > 0,
the set Xe is A,-compact.

This fact is a consequence of Theorem 2.1.

Proposition 2.2. Let  : ,A -> K be a measure. T’hen the algebra B(X)
of A -clopen sets coincides with the algebra A .

Proof. We use Theorem 2.2 and the previous proposition. Let B E

B(X). Then iB is A -continuous and {x : |iB(x)|N (x) > ~} = B n XE. As
B is closed and Xf is compact, B n Xe is compact. Thus ~ A .

As a consequence of Proposition 2.2, we obtain that C ~,)
(for the space X endowed with A -topology) and the following inequality
holds:

I ~f~~~X~ , f E (11)

Let X be zero dimensional topological space. A measure ~ defined on
the algebra B(X) of the clopen sets is called a tight measure. Thus by

An algebra of X is a ring of subsets of X containing X.
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Proposition 2.2 every measure ~ : : ,A --~ K is extended to a tight measure on
the space X endowed with the A -topology.

Proposition 2.3. Let : A - K be a measure and let f E L1(X, ).
Then f is (A , B(K))-measurable.

Proof. By Theorem 2.2 f is A -continuous. Thus f-1(B(K)) c B (X ) .
But by Proposition 2.2 we have that A  = B{X ).

3 p-adic probability space

Let  : A -3 Qp be a measure defined on a separating algebra A of subsets
of the set H which satisfies the normalization condition = 1. We set
.F == A  and denote the extension of p, on :F by the symbol P. A triple
(Q, .~, P) is said to be a p-adic probability space (S2 is a sample space, ,~ is
an algebra of events, P is a probability).

As in general measure theory we set Qa = (w o:}~o: >
0, 03A9+ = ~03B1>003A903B1, no = 03A9 B 03A9+. Everywhere below, if a property E is valid
on the subset S~+ we say that 2 is valid a.e. (mod P).

Everywhere below (G, r) denotes a measurable space over the algebra
r. Functions ~ : S~ -; G which are (.~, Immeasurable are said to be random
variables.

Everywhere below Y is a zero dimensional topological space. We consider
Y as the measurable space over the algebra B(Y). Every random variable
~ : S~ --~ Y is continuous in the ,~ topology. In particular, Qp-valued random
variables are (F, B(Qp))-measurable functions. If £ E P), we intro-
duce an expectation of this random variable by setting Eg = ~03A9 03BE(03C9)P(d03C9).
We note that every bounded random variable ~ : S~ --~ Qp belongs to

Let ~ : n ~ G be a random variable. The measure P~ is said to be a
distribution of the random variable. By Theorem 2.4 we have that

Ef(~) = ~Qp f(y)P~(dy) (12)

for every r-continuous function f G - Qp such that f P). In
particular, we have the following result.

Proposition 3.1. Let ~ : H ~ Y be a random variable and let f E
Cb(Y). Then the formula (12) holds.

We shall also use the following technical result.
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Proposition 3.2. Let ~ : 03A9 ~ Y be a random variable and let ( E
L1(03A9,P), and let f E Cb(Y) . Then = 03B6(03C9)f(~(03C9)) belongs Ll(ft,P)
and

E03BE = ~Qp Y xf(y)Pz(dxdy), z(03C9) = (03B6(03C9),~(03C9)).

Proof. We have only to show that 03BE E This fact is a conse-

quence of Theorem 2.2.
The random variables ~, r~ : S~ -+ G are called independent if

P(~ 6 B) = P(~ 6 JB) for all A, B F. (13)

Proposition 3.3. Let 03BE, ~ H ~ Y be independent mndom variables
and f unctions f , g E Cb (Y) . Then we have:

= (14)
Proof. If f and g are locally constant functions then (14) is a conse-

quence of (13). Arbitrary functions f,g E C6(Y) can be approximated by
locally constant functions (with the convergence of corresponding integrals)
by using the technique developed in the proof of Theorem 24.

Remark 3.1. In fact, the formula (14) is valid for the continuous f , g
such that the random variables f (~’), and f (~’)g(r~) belong to L1 (S~, P). .

Proposition 3.4. Let 03BE and ~ be independent random variables. Then
the random vector z = (03BE, ~) has the probability distribution Px = P~ x P03BE.

This fact is a direct consequence of (13).
Let 03BE and ~ be respectively Qp and G valued random variables and

03BE E A conditional expectation E|03BE|~ = yj is defined as a function
m E such that

~{03C9~03A9:~(03C9)~B} 
03BE(03C9)P(d03C9) = Bm(y)P~(dy) for every B E r.

Proposition 3.5. The conditional expectation if it exists, is defined
uniquely a. e. mod P,~.

Proof. We assume that there exist two conditional expectations mj E
and m1(x0) # m2(x0) at some point x0 and NP~(x0) > 0. Set

= ~r~,2(x). We have : f8 = 0 for every B E r. To
obtain the contradiction, it is sufficient to use Theorem 2.3.

As there is no analogue of the Radon-Nikodym theorem in the non-
Archimedean case [17j, [18], [19], it may happens that a conditional expec-
tation does not exist. Everywhere below we assume that m(y) = = y]
is well defined and moreover, that it belongs to the class Cb(Y) .
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Proposition 3.6. Let 03BE : 03A9 ~ Qp, ~ H ~ Y be random variables, and
~’ E . The equality

= = ~(~)1 (15)

holds for every function f E Cb(Y).
Proof. By Proposition 3.2 we obtain = 

where z(w) = (~(w), ~(w}). Set for A E B(Y) , 

03BB(A) = Qp Y xiA(y)Pz(drdy).

As = ~-1(A)03BE(03C9)P(d03C9) = Jy is a tight measure on Y.
Then

Qp Y
xf(y)Pz(dxdy) = 

~Y
f(y)03BB(dy) = ~Yf (y)m(y)P~(dy) = Ef(~)m(~).

The authors plan to apply the measure-theoretical framework developed
in this paper for studying of the limits theorems random walks for p-adic
probabilities (compare with the paper [3] in that p-adic random walk was
studied on the basis of conventional probability theory).

One of the authors (A. Khr.) would like to thank S. Albeverio for nu-
merous discussions on foundations of probability theory.
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