Annales mathématiques Blaise Pascal

A. SGHIR
 On the solution set of second-order delay differential inclusions in Banach spaces

Annales mathématiques Blaise Pascal, tome 7, no 1 (2000), p. 65-79
http://www.numdam.org/item?id=AMBP_2000__7_1_65_0
© Annales mathématiques Blaise Pascal, 2000, tous droits réservés.
L'accès aux archives de la revue «Annales mathématiques Blaise Pascal » (http:// math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

On the solution set of second-order delay differential inclusions in Banach spaces

A. Sghir

Abstract

In this paper, we consider the second-order delay differential inclusion $x "(t) \in$ $A x(t)+F\left(t, x_{t}\right)$ in a Banach space and we study some properties of its solution set. We prove a relaxation theorem which reveals the connection between the solution sets of a second-order delay differential inclusion and its convexified version, under some weak conditions.

1991 Mathematics Subject Classification. Primary 34K10, 34K15, 34K30.
Key words and phrases. Second-order delay differential inclusion, mild Trajectory, convexified second-order delay differential inclusion, properties of the solution set.

1 Introduction

Many problems in applied mathematics, such as those in control theory, lead to the study of second-order delay differential inclusions

$$
\begin{equation*}
x^{\prime \prime}(t) \in A x(t)+F\left(t, x_{t}\right), \tag{1}
\end{equation*}
$$

where A is the infinitesimal generator of a C_{0}-propagator of linear operators $(C(t))_{t \in \mathbb{R}}$ on a Banach space ($E,|\cdot|_{E}$) and F is a nonlinear multimapping, satisfying assumptions to be specified in the third section.
As particular cases of relations of the form (1) we have:
i) The second-order delay differential equation

$$
x^{\prime \prime}(t)=A x(t)+f\left(t, x_{t}\right)
$$

where $F\left(t, x_{t}\right)=f\left(t, x_{t}\right)$.
ii) The differential inequalities

$$
\left|x^{\prime \prime}(t)-A x(t)-f\left(t, x_{t}\right)\right|_{E} \leq g\left(t, x_{t}\right)
$$

where $F\left(t, x_{t}\right)$ is the ball of radius $g\left(t, x_{t}\right)$ centered at $A x(t)+f\left(t, x_{t}\right)$.
iii) Control problems where the control $u(t)$ and the trajectory $x(t)$ are related by the second-order delay differential equation

$$
x^{\prime \prime}(t)=A x(t)+f\left(t, x_{t}, u(t)\right), u(t) \in U(t) .
$$

Here, the control function $u(t)$ is a measurable function and $F\left(t, x_{t}\right)=f\left(t, x_{t}, U(t)\right)$.
This paper is concerned with the second-order delay differential inclusion (1) and its mild trajectories. We show that many results which allow us to apply differential inclusions, see for example $[1,3,8,10,13]$ and references therein, are valid as well for (1). In our relaxation theorem, the assumption of integrale boundedness (condition $\left(H_{4}\right)$) will be replaced by an integrability condition (condition $\left(H_{3}^{\prime}\right)$). We also give some properties of the solution set of the inclusion (1).

2 Preliminaries

For a real Banach space $\left(E,|\cdot|_{E}\right)$ and $J:=[-r, 0](r>0)$, let $\mathcal{C}:=C([-r, 0] ; E)$ be the Banach space of continuous functions from J to E with the usual supremum norm $\|\cdot\|$. For any continuous function $x \in C([-r, \omega] ; E)(\omega>0)$ and any $t \in I:=[0, \omega]$ we denote by x_{t} the element of \mathcal{C} defined by $x_{t}(\theta)=x(t+\theta), \theta \in J$.
For a subset $A \subset E, \operatorname{coA}, \overline{c o} A$ and $c l A$ are respectively the convex hull, the closed convex hull and the closure. We denote by $\mathcal{F}(E)$ (resp. $\mathcal{F}_{c}(E)$) the family of all nonempty closed (resp. closed convex) subsets of E, and by δ the Hausdorff distance in $\mathcal{F}(E)$, i.e. for $A, B \in \mathcal{F}(E)$

$$
\delta(A, B)=\max \left[\sup _{a \in A}\left(d(a, B), \sup _{b \in B} d(b, A)\right]\right.
$$

where $d(a, B)=\inf _{b \in B} d(a, b)$.
Next we present some basic concepts concerning multimappings.
Let X be another Banach space, for a multimapping $G: X \rightarrow \mathcal{P}(E)$ (the family of all nonempty subsets of E), we define its limsup and liminf at $x \in X$ in the Kuratowski sense by

$$
\underset{y \rightarrow x}{\limsup } G(y)=\left\{z \in E: \liminf _{y \rightarrow x} d(z, G(y))=0\right\}
$$

and

$$
\liminf _{y \rightarrow x} G(y)=\left\{z \in E: \lim _{y \rightarrow x} d(z, G(y))=0\right\}
$$

We say that the limit of $G(y)$ as y tends to x exists in the Kuratowski sense if

$$
\limsup _{y \rightarrow x} G(y)=\liminf _{y \rightarrow x} G(y) .
$$

We denote this limit by $\lim _{y \rightarrow x} G(y)=G(x)$. We say that G is upper (resp. lower) semicontinuous at x if

$$
\underset{y \rightarrow x}{\limsup } G(y) \subseteq G(x)\left(\text { resp. } G(x) \subseteq \liminf _{y \rightarrow x} G(y)\right)
$$

If G is both upper and lower semicontinuous at x then we say that G is continuous at x. If G is continuous or semicontinuous for all $x \in X$, we say that G is continuous or semicontinuous on X.

Let $G: I \rightarrow \mathcal{P}(E)$ be a multimapping. A function $g: I \rightarrow E$ such that $g(t) \in G(t)$ for every $t \in I$ is called a selection of G.
G is called measurable if, for almost all $t \in I$

$$
G(t) \subseteq c l\left\{g_{n}(t): n \geq 1\right\}
$$

where g_{n} are measurable selections of G. This definition of the mesurability is given by Zhu [13], when E is separable and $G(t) \in \mathcal{F}(E)$ for every $t \in I$ this definition is the same as the classic one (see for example [3]).
By the symbol of I_{G}^{1} we will denote the set of all Bochner integrable selections of the multimapping G, i.e.

$$
I_{G}^{1}=\left\{g \in L^{1}(I ; E): g(t) \in G(t) \text { a.e. }\right\} .
$$

If $I_{G}^{1} \neq \emptyset$, then the measurable multimapping G is called integrable and

$$
\int_{I} G(t) d t=\left\{\int_{I} g(t) d t: g \in I_{G}^{1}\right\}
$$

Clearly if G is measurable and integrably bounded, i.e. there exists $\nu \in L_{+}^{1}(I)$ such that

$$
\|G(t)\|:=\sup \left\{|e|_{E}: e \in G(t)\right\} \leq \nu(t) \text { a.e. }
$$

then G is integrable. But the converse is not true.
We will also need the following properties (see [13]) which will be used later.
Lemma 2.1 Let $G: I \rightarrow \mathcal{P}(E)$ be a measurable multimapping. Then so is $\overline{c o} G$.
Lemma 2.2 Let $G: I \rightarrow \mathcal{P}(E)$ be an integrable multimapping. Then $c l \int_{I} G(t) d t$ is a convex set and

$$
c l \int_{I} G(t) d t=c l \int_{I} c o G(t) d t=c l \int_{I} \overline{c o} G(t) d t .
$$

Remark If $G: I \rightarrow P(E)$ is an integrable multimapping, then so is \bar{G} where $\bar{G}(t)=$ $c l G(t)$ and

$$
c l \int_{I} G(t) d t=c l \int_{I} \bar{G}(t) d t
$$

(indeed $\left.c l \int_{I} G(t) d t \subset c l \int_{I} \bar{G}(t) d t \subset c l \int_{I} \overline{c o} G(t) d t=c l \int_{I} G(t) d t\right)$.
Lemma 2.3 Let $G: I \rightarrow \mathcal{P}(E)$ be a measurable multimapping and $u: I \rightarrow E$ a measurable function. Then for any measurable function $v: I \rightarrow \mathbb{R}^{+}$, there exists a measurable selection g of G such that

$$
|g(t)-u(t)|_{E} \leq d(u(t), G(t))+v(t) \text { a.e. }
$$

At last, we give some important properties of a C_{0}-propagator and its infinitesimal generator (see [7]).
A strongly continuous propagator $(C(t))_{t \in \mathbb{R}}$ of continuous operators on E is a family of continuous linear mappings $C(t): E \rightarrow E, t \in \mathbb{R}$, satisfying
i) $C(0)=I$;
ii) $C(t+s)+C(t-s)=2 C(t) C(s)$;
iii) for $x \in E, C() x:. \mathbb{R} \rightarrow E$ is continuous.

A strongly continuous propagator of continuous linear mappings is also called a $\mathrm{C}_{0^{-}}$ propagator. A linear operator A is associated with a propagator, it plays the role of the infinitesimal generator for C_{0}-semigroups:

$$
D(A)=\left\{x \in E: \lim _{h>0} \frac{2}{h^{2}}[C(h)-I] x \text { exists }\right\}
$$

and

$$
A x=\lim _{h \searrow 0} \frac{2}{h^{2}}[C(h)-I] x \text { for } x \in D(A)
$$

is the infinitesimal generator of the C_{0}-propagator $(C(t))_{t \in \mathbb{R}}, D(A)$ is the domain of A. We have:

- There exist constants $\alpha \geq 0$ and $\eta \geq 1$ such that

$$
\|C(t)\| \leq \eta e^{\alpha|t|} \text { for } t \in \mathbb{R}
$$

- $D(A)$ is dense in E and A is a closed linear operator.
- For every $x \in D(A)$ and $t \in \mathbb{R}$, then $C(t) x \in D(A)$ and

$$
\frac{d^{2}}{d t^{2}} C(t) x=A C(t) x=C(t) A x
$$

- Let $a, b \in E$ and $f \in L^{1}(I ; E)$, the function $u \in C(I ; E)$ given by

$$
u(t)=C(t) a+S(t) b+\int_{0}^{t} S(t-s)(f(s)) d s, t \in I
$$

is the mild solution on I of the initial value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=A u(t)+f(t), t \in I \\
u(0)=a, u^{\prime}(0)=b
\end{array}\right.
$$

where $S(t)=\int_{0}^{t} C(s) d s$. Moreover

$$
|u(t)|_{E} \leq \eta e^{\alpha t}|a|_{E}+\eta \alpha^{-1}\left(e^{\alpha t}-1\right)|b|_{E}+\eta \alpha^{-1}\left(e^{\alpha \omega}-1\right)\|f\|_{1}, t \in I
$$

($\alpha^{-1}\left(e^{\alpha t}-1\right)$ is replaced by t when $\alpha=0$). If $a=0$ then u is continuously differentiable and

$$
\left|u^{\prime}(t)\right|_{E} \leq \eta e^{\alpha t}|b|_{E}+\eta e^{\alpha \omega}\|f\|_{1}, t \in I .
$$

3 The solution set of a second-order delay differential inclusion and a relaxation theorem

Consider the functional differential inclusion

$$
\begin{equation*}
x^{\prime \prime}(t) \in A x(t)+F\left(t, x_{t}\right) \text { a.e. in } I \tag{3.1}
\end{equation*}
$$

Definition 3.1 A function $x \in \mathcal{C}_{\omega}:=C([-r, \omega] ; E)$ is called a mild trajectory of (3.1), if there exist $\varphi \in \mathcal{B}:=\left\{\varphi \in \mathcal{C}: \varphi^{\prime}(0)\right.$ exists $\}$ and a Bochner integrable function $f \in L^{1}(I ; E)$ such that

$$
\begin{equation*}
f(t) \in F\left(t, x_{t}\right) \text { a.e. in } I \tag{2}
\end{equation*}
$$

and

$$
x(t)=\left\{\begin{array}{lc}
\varphi(t), & t \in J \tag{3}\\
C(t) \varphi(0)+S(t) \varphi^{\prime}(0)+\int_{0}^{t} S(t-s)(f(s)) d s, t \in I
\end{array}\right.
$$

i.e., f is a Bochner integrable selection of the multimapping $t \longmapsto F\left(t, x_{t}\right)$ and x is a mild solution of the initial value problem

$$
\text { (4) }\left\{\begin{array}{l}
x "(t)=A x(t)+f(t), \quad t \in I \\
x_{0}=\varphi, \varphi \in \mathcal{B} .
\end{array}\right.
$$

For $\varphi \in \mathcal{B}$, we define $S_{F}(\varphi)=\left\{x \in \mathcal{C}_{\omega}: x\right.$ is a mild trajectory of (3.1) with $\left.x_{0}=\varphi\right\}$ to be the solution set of (3.1) from the point φ.
Let $\psi \in \mathcal{B}, g \in L^{1}(I, E)$ and $y \in \mathcal{C}_{\omega}$ be a mild solution of the problem

$$
(C)\left\{\begin{array}{l}
y "(t)=A y(t)+g(t), \quad t \in I \\
y_{0}=\psi
\end{array}\right.
$$

Suppose that the multimapping $F: I \times \mathcal{C} \rightarrow \mathcal{F}(E)$ satisfies the following conditions: H_{1}) For every $\phi \in \mathcal{C}$, the multimapping $F(., \phi)$ is measurable on I.
H_{2}) There is an integrable function $k: I \rightarrow \mathbb{R}^{+}$such that for every $\phi, \xi \in \mathcal{C}$,

$$
\delta(F(t, \phi), F(t, \xi)) \leq k(t)\|\phi-\xi\| \text { a.e. in } I .
$$

H_{3}) The function $q: t \longmapsto d\left(g(t), F\left(t, y_{t}\right)\right)$ is integrable on I.
H_{3}^{\prime}) For any function $x \in \mathcal{C}_{\omega}$, the multimapping $t \longmapsto F\left(t, x_{t}\right)$ is integrable on I.
H_{4}) There is an integrable function $\nu \in L_{+}^{1}(I)$ such that

$$
\|F(t, \phi)\|:=\sup \left\{|y|_{E}: y \in F(t, \phi)\right\} \leq \nu(t)
$$

for all $\phi \in \mathcal{C}$ and almost all $t \in I$.

Remarks

- When F satisfies $\left(H_{1}\right)$ and $\left(H_{2}\right)$, then $t \rightarrow F\left(t, y_{t}\right)$ and q are measurable on I.
- If q is measurable, then the condition (H_{3}^{\prime}) gives (H_{3}).
- When F satisfies $\left(H_{1}\right)$ and $\left(H_{2}\right)$ it satisfies $\left(H_{3}^{\prime}\right)$ if and only if it satisfies: there is $z \in \mathcal{C}_{\omega}$ such that the multimapping $t \rightarrow F\left(t, z_{t}\right)$ is integrable (see [13]).
- When F satisfies $\left(H_{2}\right)$, then for every integrable function $k^{\prime}>k$ and $\phi, \xi \in \mathcal{C}$,

$$
F(t, \phi) \subset F(t, \xi)+k^{\prime}(t)\|\phi-\xi\| B \text { a.e. in } I
$$

where B denotes the closed unit ball in E.
Next we present a useful result on the relationships between the trajectories of (3.1) and the solutions of problem (C).

Theorem 3.1 Let $\psi \in \mathcal{B}, g \in L^{1}(I ; E)$ and $y \in \mathcal{C}_{\omega}$ be a mild solution of problem (C). Assume that $\left(H_{1}\right)-\left(H_{3}\right)$ hold true and let $\mu \geq 0$. Then for all $\varphi \in \mathcal{B}$ with $\|\varphi-\psi\| \leq \mu,\left|\varphi^{\prime}(0)-\psi^{\prime}(0)\right|_{E} \leq \mu$ and for all integrable function $v: I \rightarrow \mathbb{R}^{+}$, there exist $x \in \mathcal{C}_{\nu}$ and $f \in L^{1}(I ; E)$ satisfying (2), (3) and

$$
\|x-y\|_{w} \leq K(\omega) m(\omega), \quad\|f-g\|_{1} \leq K(\omega) m(\omega)
$$

where $M=\eta\left(e^{\alpha \omega}+\frac{e^{\alpha \omega}-1}{\alpha}\right),\left(\frac{e^{\alpha \omega}-1}{\alpha}\right.$ is replaced by ω when $\left.\alpha=0\right)$,

$$
K(t)=M \exp M \int_{0}^{t} 2 k(s) d s, m(t)=\mu+\int_{0}^{t}(q(s)+v(s)) d s
$$

Proof. By lemma 2.3, there is a measurable selection f_{1} of the multimapping $t \longmapsto F\left(t, y_{t}\right)$ such that, for almost all $t \in I$,

$$
\begin{aligned}
\left|f_{1}(t)-g(t)\right|_{E} & \leq d\left(g(t), F\left(t, y_{t}\right)\right)+v(t) \\
& \leq q(t)+v(t)
\end{aligned}
$$

and then $f_{1} \in L^{1}(I ; E)$. Set

$$
x^{1}(t)= \begin{cases}\varphi(t) & \text { if } t \in J \\ C(t) \varphi(0)+S(t) \varphi^{\prime}(0)+\int_{0}^{t} S(t-s)\left(f_{1}(s)\right) d s & \text { if } t \in I\end{cases}
$$

we have $x^{1} \in \mathcal{C}_{\omega}$ and for all $t \in I$,

$$
\begin{aligned}
\left\|x_{t}^{1}-y_{t}\right\| & =\sup _{\theta \in J}\left|x^{1}(t+\theta)-y(t+\theta)\right|_{E} \\
& \leq M\left(\mu+\int_{0}^{t}\left|f_{1}(s)-g(s)\right|_{E} d s\right) \\
& \leq M\left(\mu+\int_{0}^{t}(q(s)+v(s)) d s\right)
\end{aligned}
$$

By using lemma 2.3, there is a measurable selection f_{2} of the multimapping $t \longmapsto F\left(t, x_{t}^{1}\right)$ such that, for almost all $t \in I$,

$$
\begin{aligned}
\left|f_{2}(t)-f_{1}(t)\right|_{E} & \leq 2 d\left(f_{1}(t), F\left(t, x_{t}^{1}\right)\right) \\
& \leq 2 \delta\left(F\left(t, y_{t}\right), F\left(t, x_{t}^{1}\right)\right) \\
& \leq 2 k(t)\left\|x_{t}^{1}-y_{t}\right\|
\end{aligned}
$$

and then $f_{2} \in L^{1}(I ; E)$. Set

$$
x^{2}(t)= \begin{cases}\varphi(t) & \text { if } t \in J \\ C(t) \varphi(0)+S(t) \varphi^{\prime}(0)+\int_{0}^{t} S(t-s)\left(f_{2}(s)\right) d s & \text { if } t \in I\end{cases}
$$

Thus, we can define by induction two sequences $\left(x^{n}\right)$ and $\left(f_{n}\right)$ with $x^{n} \in \mathcal{C}_{\omega}$ and $f_{n} \in L^{1}(I ; E)$ such that:
i) $x^{0}=y$ and for all $n \geq 1$,

$$
x^{n}(t)= \begin{cases}\varphi(t) & \text { if } t \in J \\ C(t) \varphi(0)+S(t) \varphi^{\prime}(0)+\int_{0}^{t} S(t-s)\left(f_{n}(s)\right) d s & \text { if } t \in I\end{cases}
$$

ii) $f_{0}=g$ and for all $n \geq 1$

$$
f_{n}(t) \in F\left(t, x_{t}^{n-1}\right) \text { a.e. in } I
$$

iii) for almost all $t \in I$ and $n \geq 1$,

$$
\left|f_{n+1}(t)-f_{n}(t)\right|_{E} \leq 2 k(t)\left\|x_{t}^{n}-x_{t}^{n-1}\right\| .
$$

It follows then from (iii) that
$i v$) for all $t \in I$ and $n \geq 1$,

$$
\begin{aligned}
\left\|x_{t}^{n+1}-x_{t}^{n}\right\| & \leq M \int_{0}^{t}\left|f_{n+1}\left(t_{1}\right)-f_{n}\left(t_{1}\right)\right|_{E} d t_{1} \\
& \leq M \int_{0}^{t} 2 k\left(t_{1}\right)\left\|x_{t_{1}}^{n}-x_{t_{1}}^{n-1}\right\| d t_{1} \\
& \leq M \int_{0}^{t} 2 k\left(t_{1}\right)\left[M \int_{0}^{t_{1}} 2 k\left(t_{2}\right)\left\|x_{t_{2}}^{n-1}-x_{t_{2}}^{n-2}\right\| d t_{2}\right] d t_{1} \\
& \vdots \\
& \leq M^{n} \int_{0}^{t} 2 k\left(t_{1}\right) \int_{0}^{t_{1}} 2 k\left(t_{2}\right) \cdots \int_{0}^{t_{n-1}} 2 k\left(t_{n}\right)\left\|x_{t_{n}}^{1}-y_{t_{n}}\right\| d t_{n} \cdots d t_{1} \\
& \leq M\left[\eta+\int_{0}^{t}(q(s)+v(s)) d s\right] . \frac{\left[M \int_{0}^{t} 2 k(s) d s\right]^{n}}{n!}
\end{aligned}
$$

Then, for all $n \geq 1$

$$
\begin{aligned}
\left\|x^{n+1}-x^{n}\right\|_{\omega} & :=\max \left(\left\|x^{n+1}-x^{n}\right\|, \sup _{t \in I}\left|x^{n+1}(t)-x^{n}(t)\right|_{E}\right) \\
& =\sup _{t \in I}\left|x^{n+1}(t)-x^{n}(t)\right|_{E} \\
& \leq \sup _{t \in I}\left\|x_{t}^{n+1}-x_{t}^{n}\right\| \\
& \leq M m(\omega) \frac{\left[M \int_{0}^{w} 2 k(t) d t\right]^{n}}{n!}
\end{aligned}
$$

By (iv) we obtain for all $t \in I$ and $n \geq 1$,

$$
\begin{aligned}
\left\|x_{t}^{n+1}-y_{t}\right\| & \leq\left\|x_{t}^{1}-y_{t}\right\|+\sum_{i=1}^{n}\left\|x_{t}^{i+1}-x_{t}^{i}\right\| \\
& \leq M m(t)\left[1+\sum_{i=1}^{n} \frac{\left[M \int_{0}^{t} 2 k(s) d s\right]^{i}}{i!}\right] \\
& \leq K(t) m(t)
\end{aligned}
$$

We deduce that (x^{n}) is a Cauchy sequence of a continuous functions, converging uniformly to a function $x \in \mathcal{C}_{\omega}$ and for almost all $t \in I,\left(f_{n}(t)\right)$ is a Cauchy sequence in
E, hence $\left(f_{n}().\right)$ converges pointwise almost everywhere to a measurable function $f($. in E. But for almost all $t \in I$ and $n \in \mathbb{N}$

$$
\begin{aligned}
\left|f_{n+1}(t)-g(t)\right|_{E} & \leq \sum_{i=1}^{n}\left|f_{i+1}(t)-f_{i}(t)\right|_{E}+\left|f_{1}(t)-g(t)\right|_{E} \\
& \leq 2 k(t) \sum_{i=1}^{n}\left\|x_{t}^{i}-x_{t}^{i-1}\right\|+q(t)+v(t) \\
& \leq 2 k(t) K(\omega) m(\omega)+q(t)+v(t)
\end{aligned}
$$

hence, $\left|f_{n+1}(t)\right|_{E} \leq|g(t)|_{E}+2 k(t) K(\omega) m(\omega)+q(t)+v(t)$, thus $\left(f_{n}\right)$ converges to f in $L^{1}(I ; E)$ and then $\left(x^{n}(t)\right)(t \in[-r, \omega])$ converges in E to

$$
\begin{cases}\varphi(t) & \text { if } t \in J \\ C(t) \varphi(0)+S(t) \varphi^{\prime}(0)+\int_{0}^{t} S(t-s)(f(s)) d s & \text { if } t \in I\end{cases}
$$

we obtain

$$
x(t)= \begin{cases}\varphi(t) & \text { if } t \in J \\ C(t) \varphi(0)+S(t) \varphi^{\prime}(0)+\int_{0}^{t} S(t-s)(f(s)) d s & \text { if } t \in I\end{cases}
$$

Furthermore, for almost all $t \in I$

$$
\begin{aligned}
d\left(f(t), F\left(t, x_{t}\right)\right) & \leq\left|f(t)-f_{n}(t)\right|_{E}+d\left(f_{n}(t), F\left(t, x_{t}\right)\right) \\
& \leq\left|f(t)-f_{n}(t)\right|_{E}+\delta\left(F\left(t, x_{t}^{n-1}\right), F\left(t, x_{t}\right)\right) \\
& \leq\left|f(t)-f_{n}(t)\right|_{E}+k(t)\left\|x_{t}^{n-1}-x_{t}\right\| .
\end{aligned}
$$

The right hand side tends to zero almost everywhere on I as $n \rightarrow+\infty$. Thus, for almost all $t \in I, f(t) \in F\left(t, x_{t}\right)$.
Consequently $x \in S_{F}(\varphi)$, moreover, for all $n \in \mathbb{N}$

$$
\begin{aligned}
\left\|x^{n+1}-y\right\|_{\omega} & \leq \sup _{t \in I}\left\|x_{t}^{n+1}-y_{t}\right\| \\
& \leq K(\omega) m(\omega)
\end{aligned}
$$

Taking limits in the precedent inequality, we have $\|x-y\|_{\omega} \leq K(\omega) m(\omega)$.
We now show $\|f-g\|_{1} \leq K(\omega) m(\omega)$.
For almost all $t \in I$ and $n \in \mathbb{N}$, we have

$$
\left|f_{n+1}(t)-g(t)\right|_{E} \leq q(t)+v(t)+2 k(t) M m(\omega) \sum_{i=1}^{n} \frac{\left[M \int_{0}^{t} 2 k(s) d s\right]^{i-1}}{(i-1)!}
$$

thus,

$$
\begin{aligned}
\left.\| f_{n+1}-g\right) \|_{1} & \leq m(\omega)\left[1+\sum_{i=1}^{n} \frac{\left.\left[M \int_{0}^{\omega} 2 k(t)\right) d t\right]^{i}}{i!}\right] \\
& \leq m(\omega) K(\omega)
\end{aligned}
$$

Taking the limit in the above inequality, we obtain $\|f-g\|_{1} \leq m(\omega) K(\omega)$.
In the next theorem we compare trajectories of (3.1) and of the convexified (relaxed) second-order delay differential inclusion $x "(t) \in A x(t)+\overline{c o} F\left(t, x_{t}\right)$
For $\varphi \in \mathcal{B}$, we put

$$
S_{\overline{c o} F}(\varphi)=\left\{x \in \mathcal{C}_{\omega}: x \text { is a trajectory of (3.2) with } x_{0}=\varphi\right\} .
$$

Theorem 3.2 Assume that F satisfies conditions $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}^{\prime}\right)$. Then, for all $\varphi \in \mathcal{B}$,

$$
c l S_{F}(\varphi)=c l S_{\overline{c o} F}(\varphi)
$$

Proof. It is easy to see that $c l S_{F}(\varphi) \subset c l S_{c o F}(\varphi)$. Conversly, we shall show that $S_{\overline{c o} F}(\varphi) \subset c l S_{F}(\varphi)$. Let $y \in S_{\overline{c o} F}(\varphi)$, then there exists $g \in L^{1}(I ; E)$ such that

$$
y(t)= \begin{cases}\varphi(t) & \text { if } t \in J \\ C(t) \varphi(0)+S(t) \varphi^{\prime}(0)+\int_{0}^{t} S(t-s)(g(s)) d s & \text { if } t \in I\end{cases}
$$

where $g(s) \in \overline{c o} F\left(s, y_{s}\right)$ a.e. in I.
The following result follows immediately from [3 p .85].

Lemma 3.1

Let $G: I \rightarrow P(E)$ be a measurable multimapping, then so is
$s \rightarrow S(t-s) G(s)$. Moreover if $f(s) \in S(t-s) G(s)$ then, there exists a measurable selection $g(s) \in G(s)$ such that $f(s)=S(t-s) g(s)$ a.e. in I.
By $\left(H_{3}^{\prime}\right)$ for all fixed t in I, the multimapping $s \longmapsto S(t-s) F\left(s, y_{s}\right)$ is integrable on I and by lemma 2.2 and its remark we obtain

$$
s \longmapsto c l S(t-s) F\left(s, y_{s}\right) \text { and } s \longmapsto \overline{c o} S(t-s) F\left(s, y_{s}\right)
$$

are also integrable on I and

$$
\begin{aligned}
c l \int_{I} S(t-s) F\left(s, y_{s}\right) d s & =c l \int_{I} c l S(t-s) F\left(s, y_{s}\right) d s \\
& =c l \int_{I} \overline{c o} S(t-s) F\left(s, y_{s}\right) d s
\end{aligned}
$$

but, $\overline{c o} S(t-s) F\left(s, y_{s}\right)=c l S(t-s) \overline{c o} F\left(s, y_{s}\right)$, indeed

$$
S(t-s) F\left(s, y_{s}\right) \subset c l S(t-s) \overline{c o} F\left(s, y_{s}\right)
$$

which is a closed convex set and then

$$
\overline{c o} S(t-s) F\left(s, y_{s}\right) \subset c l S(t-s) \overline{c o} F\left(s, y_{s}\right)
$$

conversly, it suffice to see that

$$
S(t-s) \overline{c o} F\left(s, y_{s}\right) \subset \overline{c o} S(t-s) F\left(s, y_{s}\right)
$$

let $f(s) \in S(t-s) \overline{c o} F\left(s, y_{s}\right)$, then there exists $g(s) \in \overline{c o} F\left(s, y_{s}\right)$ such that
$f(s)=S(t-s) g(s)$ hence, there exists a sequence $\left(g_{n}(s)\right)$ such that $g_{n}(s) \in \operatorname{coF}\left(s, y_{s}\right)$ and $\lim _{n \rightarrow+\infty} g_{n}(s)=g(s)$, we put

$$
f_{n}(s)=S(t-s) g_{n}(s) \in S(t-s) \operatorname{coF}\left(s, y_{s}\right)=c o S(t-s) F\left(s, y_{s}\right)
$$

and taking the limit as $n \rightarrow+\infty$, we obtain

$$
f(s)=S(t-s) g(s) \in c l \operatorname{coS}(t-s) F\left(s, y_{s}\right)
$$

thus,

$$
\begin{aligned}
c l \int_{I} S(t-s) F\left(s, y_{s}\right) d s & =c l \int_{I} c l S(t-s) \overline{c o} F\left(s, y_{s}\right) d s \\
& =c l \int_{I} S(t-s) \overline{c o} F\left(s, y_{s}\right) d s
\end{aligned}
$$

(see remark of lemma 2.2).
By lemma 3.1, we obtain for all $\varepsilon>0$ an integrable selection $h(s) \in F\left(s, y_{s}\right)$ a.e. such that

$$
\left|\int_{I} S(t-s)(g(s)) d s-\int_{I} S(t-s)(h(s)) d s\right|_{E}<\frac{\varepsilon}{K(\omega)\left(\|k\|_{1}+\omega\right)+1}
$$

set

$$
z(t)= \begin{cases}\varphi(t) & \text { if } t \in J \\ C(t) \varphi(0)+S(t) \varphi^{\prime}(0)+\int_{0}^{t} S(t-s)(h(s)) d s & \text { if } t \in I\end{cases}
$$

then z is a mild solution of problem

$$
\left\{\begin{array}{l}
z^{\prime \prime}(t)=A z(t)+h(t) \\
z_{0}=\varphi
\end{array}\right.
$$

Moreover by assumption $\left(H_{3}^{\prime}\right)$, the function $t \longmapsto q(t)=d\left(h(t), F\left(t, z_{t}\right)\right)$ is integrable on I. It follows from theorem 3.1 for $\mu=0$ and $v(t)=\frac{s}{K(\omega)\left(\|k\|_{1}+\omega\right)+1}$ there exists $x \in S_{F}(\varphi)$ such that

$$
\begin{aligned}
\|x-z\|_{\omega} & \leq K(\omega)\left[\int_{0}^{\omega} q(t) d t+\int_{0}^{\omega} v(t) d t\right] \\
& \leq \frac{\varepsilon K(\omega)\left(\|k\|_{1}+\omega\right)}{K(\omega)\left(\|k\|_{1}+\omega\right)+1}
\end{aligned}
$$

thus,

$$
\begin{aligned}
\|x-y\|_{\omega} & \leq\|x-z\|_{\omega}+\|z-y\|_{\omega} \\
& \leq \frac{\varepsilon K(\omega)\left(\|k\|_{1}+\omega\right)}{K(\omega)\left(\|k\|_{1}+\omega\right)+1}+\frac{\varepsilon}{K(\omega)\left(\|k\|_{1}+\omega\right)+1} \\
& \leq \varepsilon .
\end{aligned}
$$

4 Some properties of the solution set

In this section, we discuss the continuous dependence of the solution set on parameters and initial value. We suppose that E is a reflexive Banach space.
Theorem 4.1. Let $\left(\Lambda, d_{\Lambda}\right)$ be a metric space, $F_{\lambda}: I \times \mathcal{C} \rightarrow \mathcal{F}_{c}(E)$ a family of multimappings satisfying conditions $\left(H_{1}\right),\left(H_{2}\right)$ with the same function k and $\left(H_{4}\right)$ for the same function ν. If for any $(t, \phi) \in I \times \mathcal{C}, \lim _{\lambda \rightarrow \lambda_{0}} \delta\left(F_{\lambda}(t, \phi), F_{\lambda_{0}}(t, \phi)\right)=0$, then for all $\varphi \in \mathcal{B}, \lambda \longmapsto S_{F_{\lambda}}(\varphi)$ is upper semicontinuous at λ_{0}.
Proof. Let $x \in \limsup _{\lambda \rightarrow \lambda_{0}} S_{F_{\lambda}}(\varphi)$, there exists a sequence $\left(\lambda_{n}\right)$ such that $\lim _{n \rightarrow+\infty} \lambda_{n}=\lambda_{0}$ and $x^{\lambda_{n}} \in S_{F_{\lambda_{n}}}(\varphi)$ such that $\lim _{n \rightarrow+\infty} x^{\lambda_{n}}=x$ in \mathcal{C}_{ω}, hence

$$
x^{\lambda_{n}}(t)= \begin{cases}\varphi(t) & \text { if } t \in J \\ C(t) \varphi(0)+S(t) \varphi^{\prime}(0)+\int_{0}^{t} S(t-s)\left(f_{\lambda_{n}}(s)\right) d s & \text { if } t \in I\end{cases}
$$

where $f_{\lambda_{n}}(s) \in F_{\lambda_{n}}\left(s, x_{s}^{\lambda_{n}}\right)$ a.e. in I.
The sequence $\left(f_{\lambda_{n}}\right)$ is integrably bounded and E is reflexive, then by the Dunford-Pettis theorem [12], taking a subsequence and keeping the same notation, we may assume that it converges weakly in $L^{1}(I ; E)$ to some function $f \in L^{1}(I ; E)$. For each $t \in I$, the mapping

$$
g \in L^{1}(I ; E) \rightarrow \int_{0}^{t} S(t-s)(g(s)) d s
$$

is a continuous linear operator from $L^{1}(I ; E)$ into E. It remains continuous if these spaces are endowed with the weak topologies [2]. Therefore for each $t \in I$, the sequence $\left(x^{\lambda_{n}}(t)\right)$ converges weakly to $C(t) \varphi(0)+S(t) \varphi^{\prime}(0)+\int_{0}^{t} S(t-s)(f(s)) d s$. Since by assumption $\left(x^{\lambda_{n}}(t)\right)$ converges to $x(t)$ in E, we have

$$
x(t)=C(t) \varphi(0)+S(t) \varphi^{\prime}(0)+\int_{0}^{t} S(t-s)(f(s)) d s
$$

We claim that $f(s) \in F_{\lambda_{0}}\left(s, x_{s}\right)$ a.e. According to Mazur's theorem [6], the weak convergence implies the existence of the double sequence of nonnegative numbers ($\alpha_{m, n}$) such that
i) $\alpha_{m, n}=0$ for $n \geq n_{0}(m)$;
ii) $\sum_{n=m}^{n_{0}(m)} \alpha_{m, n}=1$ for $m \in \mathbb{N}$;
iii) the sequence $\left(\tilde{f}_{m}\right)$, where $\tilde{f}_{m}(t)=\sum_{n=m}^{n_{0}(m)} \alpha_{m, n} f_{\lambda_{n}}(t)$, converges to f with respect to the norm of the space $L^{1}(I, E)$. Passing if necessary to a subsequence we can assume that $\left(\tilde{f}_{m_{j}}\right)$ converges to f almost everywhere on I. Moreover for almost everywhere $s \in I$

$$
\begin{aligned}
d\left(f_{\lambda_{n}}(s), F_{\lambda_{0}}\left(s, x_{s}\right)\right. & \leq \delta\left(F_{\lambda_{n}}\left(s, x_{s}^{\lambda_{n}}\right), F_{\lambda_{0}}\left(s, x_{s}\right)\right) \\
& \leq \delta\left(F_{\lambda_{n}}\left(s, x_{s}^{\lambda_{n}}\right), F_{\lambda_{n}}\left(s, x_{s}\right)\right)+\delta\left(F_{\lambda_{n}}\left(s, x_{s}\right), F_{\lambda_{0}}\left(s, x_{s}\right)\right) \\
& \leq k(s)\left\|x_{s}^{\lambda_{n}}-x_{s}\right\|+\delta\left(F_{\lambda_{n}}\left(s, x_{s}\right), F_{\lambda_{0}}\left(s, x_{s}\right)\right)
\end{aligned}
$$

and since $\lim _{\lambda \rightarrow \lambda_{0}} \delta\left(F_{\lambda}(t, \phi), F_{\lambda_{0}}(t, \phi)\right)=0$, then

$$
\forall \varepsilon>0, \exists N \in \mathbb{N}: \forall n>N, f_{\lambda_{n}}(s) \in F_{\lambda_{0}}\left(s, x_{s}\right)+2 \varepsilon B \text { a.e. in } I
$$

where B is the closed unit ball in E, and then, for all $n>N$

$$
\tilde{f}_{m_{j}}(s) \in \sum_{n=m_{j}}^{n_{0}\left(m_{j}\right)} \alpha_{m_{j}, n}\left(F_{\lambda_{0}}\left(s, x_{s}\right)+2 \varepsilon B\right)=F_{\lambda_{0}}\left(s, x_{s}\right)+2 \varepsilon B
$$

taking the limit in the above formula, we deduce that for all $\varepsilon>0$, $f(s) \in F_{\lambda_{0}}\left(s, x_{s}\right)+2 \varepsilon B$ a.e. in I, and then

$$
f(s) \in F_{\lambda_{0}}\left(s, x_{s}\right) \text { a.e. in } I
$$

Remark Since, in the theorem 4.1, the assumption E is reflexive is used only for deducing the sequence ($f_{\lambda_{n}}$) converges weakly in $L^{1}(I ; E)$, it may be replaced by the following assumption: there exists a $k \geq 0$ such that for all bounded subset $\Omega \subset \mathcal{C}$

$$
\chi(F(t, \Omega)) \leq k \chi_{0}(\Omega) \text { for all } t \in I
$$

where χ (resp. χ_{0}) is the measure of noncompactness in E (resp. \mathcal{C}) (see for example $[4,11])$. In this case, we obtain

$$
\chi\left(\left\{f_{\lambda_{n}}(t): n \in \mathbb{N}\right\}\right) \leq k \chi_{0}\left(\left\{x_{t}^{\lambda_{n}}: n \in \mathbb{N}\right\}\right)=0
$$

for almost all $t \in I$, i.e. the set $\left\{f_{\lambda_{n}}(t): n \in \mathbb{N}\right\}$ is relatively compact in E a.e. in I and since $\sup _{n \in \mathcal{Y}}\left\|f_{\lambda_{n}}\right\|_{1}<+\infty$, then from Diestel'theorem [4] it follows that the sequence $\left(f_{\lambda_{n}}\right)$ is relatively weak compact in the space $L^{1}(I ; E)$.
Theorem 4.2 (E is not reflexive). Let (Λ, d_{Λ}) be a metric space, $F_{\lambda}: I \times \mathcal{C} \rightarrow \mathcal{F}(E)$ a family of multimappings satisfying the conditions $\left(H_{1}\right),\left(H_{2}\right)$ with the same function k. If for any $(t, \phi) \in I \times \mathcal{C}$ the multimapping $\lambda \longmapsto F_{\lambda}(t, \phi)$ is lower semicontinuous at $\lambda_{0} \in \Lambda$, then for all $\varphi \in \mathcal{B}, \lambda \longmapsto S_{F_{\lambda}}(\varphi)$ is lower semicontinuous at λ_{0}.
Proof. Since the case $S_{F_{\lambda_{0}}}(\varphi)=\emptyset$ is trivial, we assume that $S_{F_{\lambda_{0}}}(\varphi) \neq \emptyset$. Let $x \in S_{F_{\lambda_{0}}}(\varphi)$ then,

$$
x(t)= \begin{cases}\varphi(t) & \text { if } t \in J \\ C(t)_{\varphi}(0)+S(t) \varphi^{\prime}(0)+\int_{0}^{t} S(t-s)(f(s)) d s & \text { if } t \in I\end{cases}
$$

where $f(s) \in F_{\lambda_{0}}\left(s, x_{s}\right) \subset \liminf _{\lambda \rightarrow \lambda_{0}} F_{\lambda}\left(s, x_{s}\right)$ a.e. in I, thus $\lim _{\lambda \rightarrow \lambda_{0}} d\left(f(s), F_{\lambda}\left(s, x_{s}\right)\right)=0$ a.e., and then for $\varepsilon>0$, there exists $\rho>0$ such that

$$
d_{\Lambda}\left(\lambda, \lambda_{0}\right)<\rho, t \longmapsto d\left(f(t), F_{\lambda}\left(t, x_{t}\right)\right)=q(t)
$$

is integrable and x is a mild solution of

$$
\left\{\begin{array}{l}
x "(t)=A x(t)+f(t) \\
x_{0}=\varphi
\end{array}\right.
$$

and by theorem 3.1 with $\mu=0$ and $v(t)=\frac{\varepsilon}{2 \omega K(\omega)}$ there exists a function $x^{\lambda} \in S_{F_{\lambda}}(\varphi)$ (for $d_{\Lambda}\left(\lambda, \lambda_{0}\right)<\rho$) such that

$$
\left\|x^{\lambda}-x\right\|_{\omega} \leq K(\omega) m(\omega)=K(\omega)\left[\int_{0}^{\omega}(q(t)+v(t)) d t\right]=\varepsilon
$$

hence $x \in \underset{\lambda \rightarrow \lambda_{0}}{\liminf } S_{F_{\lambda}}(\varphi)$.
Combining theorems 4.1 and 4.2, we obtain.
Corollary Let $\left(\Lambda, d_{\Lambda}\right)$ be a metric space, $F_{\lambda}: I \times \mathcal{C} \rightarrow \mathcal{F}_{c}(E)$ a family of multimappings satisfying the conditions $\left(H_{1}\right),\left(H_{2}\right)$ with the same function k and $\left(H_{4}\right)$ with the same function ν. If for any $(t, \phi) \in I \times \mathcal{C}, \lim _{\lambda \rightarrow \lambda_{0}} \delta\left(F_{\lambda}(t, \phi), F_{\lambda_{0}}(t, \phi)\right)=0$, then for all $\varphi \in \mathcal{B}$, $\lambda \longmapsto S_{F_{\lambda}}(\varphi)$ is continuous at λ_{0}.
Theorem 4.3 Assume that $F: I \times \mathcal{C} \rightarrow \mathcal{F}_{c}(E)$ satisfying the conditions $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{4}\right)$. Then $S_{F}: \mathcal{C}^{1} \rightarrow \mathcal{P}\left(\mathcal{C}_{\omega}\right)$ is continuous on \mathcal{C}^{1}, where $\mathcal{C}^{1}:=C^{1}(J ; E)$ denote the Banach space of continuously differentiable E-valued functions on J with the norm $\|\varphi\|_{\mathcal{C}^{1}}=\|\varphi\|+\left\|\varphi^{\prime}\right\|$.
Proof. For any $\varphi_{1}, \varphi_{2} \in \mathcal{C}^{1}$, let $F_{\varphi_{2}}(t, \phi)=F\left(t, \phi+\left(\widetilde{\varphi_{2}}\right)_{t}-\left(\widetilde{\varphi_{1}}\right)_{t}\right)$ for all $(t, \phi) \in I \times \mathcal{C}$ then $S_{F}\left(\varphi_{2}\right)=S_{F_{\varphi_{2}}}\left(\varphi_{1}\right)+\tilde{\varphi}_{2}-\tilde{\varphi}_{1}$ where

$$
\tilde{\varphi}(t)= \begin{cases}\varphi(t) & \text { if } t \in J \\ C(t) \varphi(0)+S(t) \varphi^{\prime}(0) & \text { if } t \in I\end{cases}
$$

indeed,

$$
\begin{aligned}
x \in S_{F_{\varphi_{2}}}\left(\varphi_{1}\right) & \Leftrightarrow x(t)= \begin{cases}\varphi_{1}(t) & \text { if } t \in J \\
C(t) \varphi_{1}(0)+S(t) \varphi_{1}^{\prime}(0)+\int_{0}^{t} S(t-s)(f(s)) d s & \text { if } t \in I\end{cases} \\
\text { where } f(s) & \in F_{\varphi_{2}}\left(s, x_{s}\right) \text { a.e. } \\
& \Leftrightarrow x(t)+\tilde{\varphi}_{2}(t)-\tilde{\varphi}_{1}(t)=\left\{\begin{array}{l}
\varphi_{2}(t) \\
C(t) \varphi_{2}(0)+S(t) \varphi_{2}^{\prime}(0)+\int_{0}^{t} S(t-s)(f(s)) d s
\end{array}\right.
\end{aligned}
$$

where $f(s) \in F\left(s, x_{s}+\left(\widetilde{\varphi_{2}}\right)_{s}-\left(\widetilde{\varphi_{1}}\right)_{s}\right)=F\left(s,\left(x+\tilde{\varphi}_{2}-\tilde{\varphi}_{1}\right)_{s}\right)$ a.e.
$\Leftrightarrow x+\tilde{\varphi}_{2}-\tilde{\varphi}_{1} \in S_{F}\left(\varphi_{2}\right)$.
Furthermore, it is clear that $\varphi_{2} \longmapsto F_{\varphi_{2}}(t, \phi)$ (for all $(t, \phi) \in I \times \mathcal{C}$) is continuous at φ_{1} and the family $\left(F_{\varphi_{2}}\right)_{\varphi_{2} \in \mathcal{C}^{1}}$ satisfy the assumptions of precedent corollary, therefore for all $\varphi \in \mathcal{C}^{1}, \varphi_{2} \longmapsto S_{{F_{\varphi_{2}}}}(\varphi)$ is continuous at φ_{1} and then

$$
\begin{aligned}
\lim _{\varphi_{2} \rightarrow \varphi_{1}} S_{F}\left(\varphi_{2}\right) & =\lim _{\varphi_{2} \rightarrow \varphi_{1}}\left(S_{F_{\varphi_{2}}}\left(\varphi_{1}\right)+\tilde{\varphi}_{2}-\tilde{\varphi}_{1}\right) \\
& =S_{F_{\varphi_{1}}}\left(\varphi_{1}\right) \\
& =S_{F}\left(\varphi_{1}\right)
\end{aligned}
$$

Theorem 4.4 (E is not reflexive) Assume that $F: I \times \mathcal{C} \rightarrow \mathcal{F}_{c}(E)$ satisfying the conditions $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{4}^{\prime}\right)$ i.e. there exists a compact $K \subset E$ such that for every $(t, \phi) \in I \times \mathcal{C}, F(t, \phi) \subset K$. Then for all $\varphi \in \mathcal{B}, S_{F}(\varphi)$ is compact.

Proof. We prove first that $S_{F}(\varphi)$ is relatively compact. Let $\left(x^{n}\right)$ be a sequence of $S_{F}(\varphi)$, then for all $n \in \mathbb{N}$

$$
x^{n}(t)= \begin{cases}\varphi(t) & \text { if } t \in J \\ C(t) \varphi(0)+S(t) \varphi^{\prime}(0)+\int_{0}^{t} S(t-s)\left(f_{n}(s)\right) d s & \text { if } t \in I\end{cases}
$$

where $f_{n}(s) \in F\left(s, x_{s}^{n}\right)$ a.e. in I.
We shall show that $\mathcal{A}:=\left\{x_{\left.\right|_{I}}^{n}: n \in \mathbb{N}\right\}$ is equicontinuous. For each $0 \leq t_{0}<t \leq \omega$ and $n \in \mathbb{N}$

$$
\begin{aligned}
\left|x^{n}(t)-x^{n}\left(t_{0}\right)\right|_{E} \leq & \left|C(t) \varphi(0)-C\left(t_{0}\right) \varphi(0)\right|_{E}+\left|S(t) \varphi^{\prime}(0)-S\left(t_{0}\right) \varphi^{\prime}(0)\right|_{E}+ \\
& \int_{0}^{t_{0}}\left\|S(t-s)-S\left(t_{0}-s\right)\right\|\left|f_{n}(s)\right|_{E} d s+\int_{t_{0}}^{t}\|S(t-s)\|\left|f_{n}(s)\right|_{E} d s
\end{aligned}
$$

but,

$$
\begin{aligned}
\left\|S(t-s)-S\left(t_{0}-s\right)\right\| & =\left\|\int_{0}^{t-s} C(\tau) d \tau-\int_{0}^{t_{0}-s} C(\tau) d \tau\right\| \\
& \leq \int_{t_{0}-s}^{t-s}\|C(\tau)\| d \tau \\
& \leq \int_{t_{0}-s}^{t-s} \eta e^{\alpha \tau} d \tau \\
& \leq \eta \alpha^{-1}\left[e^{\alpha(t-s)}-e^{\alpha\left(t_{0}-s\right)}\right] \\
& \leq \eta\left(t-t_{0}\right) e^{\alpha \omega}
\end{aligned}
$$

$\left(\alpha^{-1}\left[e^{\alpha(t-s)}-e^{\alpha\left(t_{0}-s\right)}\right]\right.$ is replaced by $t-t_{0}$ when $\left.\alpha=0\right)$, then

$$
\int_{0}^{t_{0}}\left\|S(t-s)-S\left(t_{0}-s\right)\right\|\left|f_{n}(s)\right|_{E} d s \leq \eta\left(t-t_{0}\right) e^{\alpha \omega} \int_{0}^{t_{0}}\left|f_{n}(s)\right|_{E} d s
$$

Also,

$$
\int_{t_{0}}^{t}\|S(t-s)\|\left|f_{n}(s)\right|_{E} d s \leq \eta\left(t-t_{0}\right) e^{\alpha \omega} \int_{t_{0}}^{t}\left|f_{n}(s)\right|_{E} d s
$$

Since f_{n} are integrably bounded and the maps $t \rightarrow C(t) \varphi(0), t \rightarrow S(t) \varphi^{\prime}(0)$ are uniformly continuous on I, we obtain that \mathcal{A} is equicontinuous, clearly it is also bounded. Now, we prove that $\mathcal{A}(t)=\left\{x^{n}(t): n \in \mathbb{N}\right\}$ is relatively compact. For all $s \in I$, $S(t-s): E \rightarrow E$ is continuous, then by assumption $\left(H_{4}^{\prime}\right)$ we have that $K_{1}=\left\{S(t-s) f_{n}(s): s \in[0, t]\right.$ and $\left.n \in \mathbb{N}\right\}$ is relatively compact, thus $K_{2}=\overline{c o} K_{1}$ is compact and $K_{3}=\left\{t x:(t, x) \in I \times K_{2}\right\}$ is compact. Consequently $\mathcal{A}(t) \subset C(t) \varphi(0)+S(t) \varphi^{\prime}(0)+K_{3}$ is relatively compact. From the Ascoli theorem [4,11] we may assume that the sequence (x^{n}) converges to some $x \in \mathcal{C}_{\omega}$. We prove next that $x \in S_{F}(\varphi)$. By condition $\left(H_{4}^{\prime}\right)$, the set $\left\{f_{n}(t): n \in \mathbb{N}\right\}$ is relatively compact in E and since $\sup _{n \in I N}\left\|f_{n}\right\|_{1}<+\infty$, then from Diestel's theorem [4] it follows that the sequence $\left(f_{n}\right)$ is relatively weak compact in the space $L^{1}(I ; E)$ and by using exactly the same method as in the proof of theorem 4.1 we obtain $x \in S_{F}(\varphi)$.

References

[1] Aubin J.P. and Cellina A., Differential inclusions, Springer-Verlag, Berlin, 1984.
[2] Brezis H., Analyse fonctionnelle. Théorie et Applications Masson (1983).
[3] Castaing C. and Valadier M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin, (1977).
[4] Deimling K., Nonlinear analysis. Springer-Verlag, Berlin (1985).
[5] Diestel J., Remarks on weak compactness in $L^{1}(\mu ; E)$, Glasgow Math. J. 18, pp. 87-91 (1977).
[6] Ekeland I. and Temam R., Convex analysis and variational problems. NorthHolland, Amsterdam (1976).
[7] Fattorini H., Second order linear differential equations in Banach spaces. Math. Holland (1985).
[8] Frankowska H., A priori estimates for operational differential inclusions. J. Diff. Equations 84 (1990), pp. 100-128.
[9] Hale J., Functional differential equations. Springer-Verlag (1977).
[10] Nguyen D.H. and Nguyen K.S., Existence and relaxation of solutions of functional differential inclusions. Vietnam Journal of Math. Vol. 23, N2 (1995).
[11] Robert H. Martin JR., Nonlinear operators and differential equations in Banach spaces. John-Wiley. New-York (1976).
[12] Yoshida K., Functional Analysis. Springer (1965).
[13] Zhu Qi Ji, On the solution set of differential inclusions in Banach space, J. Diff. Equations 93 (1991) pp. 213-237.

Université Cadi Ayyad, Faculté des sciences Semlalia, Département de Matématiques, B.P. 2390, Marrakech 40000, Morocco.

