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BÖCHER’S THEOREM IN A SPACE OF DIMENSION ONE

Premalatha and T. Sowmya

Ann. Math. Blaise Pascal, Vol. 7, N° 1, 2000, pp 81-86

Abstract:

In this paper we express a harmonic function h defined outside a compact
set in a B.H. space n as an integral with respect to a signed measure in n
assuming n satisfies the axiom of local proportionality. If in particular h is

positive and i~ has harmonic dimension one then this expression leads to an
analogue of Bocher’s theorem in a space of dimension one.

AMS Subject Classification: (1991) 31 D o5.

§1. Introduction

We consider a harmonic function h defined outside a compact set in a B.H.

space n. This can be written as the difference of two superharmonic functions
. in 0 where both functions have the same compact support in n . If we assume
the axiom of local proportionality this leads to an integral representation for
h with respect to a signed measure which looks like the Riesz representation.
This is of interest because the Riesz representation does not give an integral
for a harmonic function as the measure associated with a harmonic function
is zero. This theorem gives an analogue of Böcher’s theorem in a B.H. space
of harmonic dimension one if we assume h is positive.

§2. Preliminaries

Let n be a harmonic space satisfying the axioms 1,2,3 of M.Brelot. We
assume that constants are harmonic in n in which case n is referred to as a

B.H.space. i~ is called a B.P. or B.S. space according as there exists a positive
potential or not in 03A9. For a nonlocally polar outer regular compact set k ~ 03A9
and a continuous function f on ak, as in ~1~, the notation Bk f stands for
the Dirichlet solution in n - k with values f or ak and 0 at the point at
infinity.
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In the case of a B.S. space n , we fix an outer regular compact set K and a

regular domain w , K C w with respect to which flux is defined (for definition
see [1]). We also fix a harmonic function H > 0 in n - K tending to 0 on
aK with flux at infinity one.

We recall the definition of a B.H. potential in a B.S. space n : Let {n;}
be a fixed regular exhaustion of H. . Fix an ultrafilter e finer than the filter

of sections of {i~; } . . Let D (u) be the limit of ~’ according to the ultrafilter
e. An admissible superharmonic function u in a B.S. space n with flux at

infinity a is said to be a B.H. - potential if D (u - aH) = 0.

It can be easily seen that a superharmonic function u with compact support
in a B.P. (respectively B.S.) space can be written uniquely as the sum of a
potential (respectively B.H. potential) and a harmonic function.

Let n be a B.H. space satisfying the axiom of local proportionality.

Case (i). . Let n be a B.P. space. If 03B4 is a regular domain and z a fixed
point in b, then for any y there exists a unique potential qy(x) with support
y such that ~ = 1 where J/~ is the harmonic measure of 6 with

respect to z.

If u is a potential with compact support A then there exists a unique
Radon measure p > 0 supported by A such that u(x) 
and conversely if ~ > 0 is a Radon measure with compact support then

is a potential.

Case (ii): Let n be a B.S. space. In this case, for any y, there exists a

unique B.H. potential with support y and flux qy at infinity -1. Then
if u(z) is a B.H. potential with compact support A, there exists a unique
Radon measure ~c > 0 supported by A such that u(z) 
and conversely, if  > 0 is a Radon measure with compact support, then

. u(x) = is a B.H. potential with flux u at infinity = - f~.
§ 3. BÖCHER’S THEOREM IN A SPACE OF DIMENSION ONE

Theorem 1.

Let h be a harmonic function defined outside a compact set X in a B.H.
space n and wa be any regular domain such that X C wo. Assume that fI

has a countable base and satisfies the axiom of local proportionality. Then
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there exists a signed measure  with support contained in ~03C90 and a uniquely

determined harmonic function u in f~ such that h(z) = qy(z)du(y) + u(z)
in f~ ~ wo.

Here qy(z) is the potential (respectively B.H. potential) that we fix in 03A9

as explained in §2, if fI is a B.P. (respectively B.S.) space. Moreover if the
harmonic dimension at infinity of n is 1, u is a constant if and only if h is

bounded on one side near the point at infinity A.

Proof.

Let zo E X and sxo be a superharmonic function in n with point support
zo.

Choose an outer regular compact set Ki such that X C K° C Ki C wo.

Without loss of generality we can assume that h is harmonic in K1
and continuous in . For a continuous function f on awo let D f =

H03C90f denote the Dirichlet solution in wo with boundary value f.

Since Dszo  szo in wo we have inf(sx0 - Dszo) > 0.
axl

Choose a > 0 such that

a(szo - Dszo) > Dh - h on aKi.

Then h + 03B1sx0 > D (h + aszo ) on ~K1.

Since h + 03B1sx0 = D(h + aszo) on awo, by minimum principle of harmonic
functions we get

h + 03B1sx0 > D(h + 03B1sx0) in 03C90 ~ K1.

Define h1 = h + 03B1sx0 in 03A9 ~ 03C90D(h + 03B1sx0) in 03C90
and h2 = 03B1sx0 on 03A9 ~ 03C90D(03B1sx0) 

on 03C90.

Then hl and h2 are finite, continuous, superharmonic functions in H with

compact support in ~03C90 such that

h = h1 - h2 on 03A9 ~ 03C90.

Now, h; = p; + u~ i = 1,2 where p; is a potential (respectively B.H.
potential) with support in awo if f~ is a B.P. (respectively B.S.) space and
u; is harmonic in H.
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Hence h = pi - p2 + u where u = ui - u2 is harmonic in Q. But

p; (x) = qy(z)dP; (y), , i = I, 2 where = 1, 2 is a Radon measure with

support contained in ~03C90.

Hence = ~ + u(z) where P = pi - p2 is a signed measure

with support contained in ~03C90.

We shall complete the proof by considering the two cases of a B.P. space
and a B.S. space separately.

Case (i). Let 0 be a B.P. space.

Suppose hex) = ~ + u’(x) where p’ is also a signed measure

with support contained in awo and u’ is harmonic in H.

Then h can be written as

. 

where q; , i = 1, 2 are potentials in n with compact support.

Then P(pi) = D(P2) = D(ql) = P(q2) = 0 gives

D (u) = u = u~ ~ D (u~).

Thus u is uniquely determined in n.

Now h = pi - p2 + u on 03C90.

Since pi and p2 are potentials with compact support, they are bounded
outside a compact set in H. 

’

Hence if h is bounded on one side near .If so is u.

Therefore if n is of harmonic dimension one, we see that u reduces to a

constant [2].
If u is a constant then clearly h is bounded on one side near it.

Case (ii): Let fl be a B.S. space.

Let flux pi = ai and flux p2 = a2.

Then h - (al - a2)H = (P~ - aiH) - (Pz - a2H) + u

gives D (h - (xi 2014 az) H) = u by definition of a B.H. potential.
Since 03B11 2014 a2 = flux h, we see that given h, u is uniquely determined in

H. 
’
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Now since D (p~ - a; H) = 0 we get ps - a; H, i =1, 2 are bounded outside

a compact set.

Hence h = a bounded harmonic function outside a compact
set.

If h is bounded on one side near ,~, , then u + (al - a2)H is bounded on

one side near ,~ .

If n has harmonic dimension one this implies that u is a constant [2]. .

If u is a constant, h is obviously bounded on one side near A.

This completes the proof of the theorem.

Now if we take the function h in the above theorem to be > 0 we can

deduce the analogue of the inverted version of Bocher’s theorem, which may
be stated as follows, in a space of harmonic dimension one.

Bocher’s theorem: (Inverted version). Let u be positive and harmonic in
Rn - B, n > 2 where B is the unit ball about the origin. Then

if n = 2
~ " B a + b(z if n > 3

where b(z) is a bounded harmonic function in Rn - B and a > 0 is a

constant. If n ~ 3, b(z) is actually bounded by a bounded potential.

This can be proved by applying the Kelvin’s transform to the standard form
of Böcher’s theorem [3].
Theorem 2.

Let n be a B.H. space of harmonic dimension one and h be a positive

harmonic function defined outside a compact set X. If 03A9 is a B.P. spacethen h = a + b where a is a constant and b is a harmonic function bounded
by a bounded potential outside a compact set.

If n is B.S., then h = aH +6 outside a compact set where a is a constant
and b is a bounded harmonic function outside a compact set.

Proof.

Case (i). Let fl be a B.P. space.

Take pi p2 as in Theorem I . .

Since h > 0, u is a constant say a.
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Let K’ be an outer regular compact set such that (K’)0 ~ awo. .

Then for i =1, 2, tr; = 
0 on K’ Then for i = 1, 2, vi = pi - BK’pi on 03A9 ~ K’

is a subharmonic function on H such that o  v;  p; .

Since p; is a potential this implies that v; = 0 or p; = BK’pi outside the
compact set K’.

If p;  A on a K’, then BK’pi  03BBBK’1.
Hence h = p1 - p2 + a = a + b where b = p1 - p2 is such that |b|  203BBBK’1,
a bounded potential outside a compact set.

. Case (ii). Let H be a B.S. space.
Then as in the proof of the above theorem since u is a constant we get

h = (a.l - (2)H + a bounded harmonic function
- aH + b outside a compact set.
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