Annales mathématiques Blaise Pascal

Sergey V.Ludkovsky
 Quasi-invariant measures on non-archimedean groups and semigroups of loops and paths, their representations. II

Annales mathématiques Blaise Pascal, tome 7, n 2 (2000), p. 55-80
http://www.numdam.org/item?id=AMBP_2000__7_2_55_0
© Annales mathématiques Blaise Pascal, 2000, tous droits réservés.
L'accès aux archives de la revue «Annales mathématiques Blaise Pascal » (http:// math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Quasi-invariant measures on non-Archimedean groups and semigroups of loops and paths, their representations. II.

Sergey V. Ludkovsky

permanent address: Theoretical Department, Institute of General Physics, Str. Vavilov 38, Moscow, 117942, Russia.

Abstract

Loop groups G as families of mappings of one non-Archimedean Banach manifold M into another N with marked points over the same locally compact field \mathbf{K} of characteristic $\operatorname{char}(\mathbf{K})=0$ are considered. Quasi-invariant measures on them are constructed. Then measures are used to investigate irreducible representations of such groups.

1 Introduction.

In the first part results on loop semigroups were exposed. This part is devoted to loop and path groups, quasi-invariant measures on them and their unitary representations. Results from Part I are used below (see also Introduction of Part I).

Irreducible components of strongly continuous unitary representations of Abelian locally compact groups are one-dimensional by Theorem 22.17 [10]. In general commutative non-locally compact groups may have infinitedimensional irreducible strongly continuous unitary representations, for example, infinite-dimensional Banach spaces over \mathbf{R} considered as additive groups (see §2.4 in [1] and §4.5 [9]).

[^0]In §3 for the investigation of a representation's irreducibility the pseudodifferentiability and some other specific properties of the constructed quasiinvariant measures are used. Besides continuous characters separating points of the loop group (see Theorem 3.3), strongly continuous infinite-dimensional irreducible unitary representations are constructed in §3.2.

The path groups and semigroups are investigated in §4.
In the real case there are known H-groups defined with the help of homotopies [18]. A compositon on the \boldsymbol{H}-group is defined relative to classes of homotopic mappings. In the non-Archimedean case homotopies are meaningless. A space of mappings $C\left(\xi,\left(M, s_{0}\right) \rightarrow\left(N, y_{0}\right)\right)$ from one manifold M into another N preserving marked points (see I. §2.6) is supplied with the composition operation of families of mappings using loop semigroups. It is called a loop O-semigroup, since compositions are defined relative to certain equivalence classes, which are closures of families of certain orbits relative to the action of the diffeomorphism group of M preserving s_{0}. From it a loop O-group is defined with the help of the Grothendieck construction. O-groups are considered in $\S 5$.

In $\S 6$ the notation is summarized.

2 Loop groups.

2.1. Note and Definition. For a commutative monoid $\Omega_{\xi}(M, N)$ with the unity and the cancellation property (see Theorem I.2.7 and Condition I.2.7.(5)) there exists a commutative group $L_{\xi}(M, N)$ equal to the Grothendieck group. This group is the quotient group F / B, where F is a free Abelian group generated by $\Omega_{\xi}(M, N)$ and B is a closed subgroup of F generated by elements $[f+g]-[f]-[g], f$ and $g \in \Omega_{\xi}(M, N)$, [f] denotes an element of F corresponding to f. In view of $\S 9$ [12] and [17] the natural mapping

$$
\text { (1) } \gamma: \Omega_{\xi}(M, N) \rightarrow L_{\xi}(M, N)
$$

is injective. We supply F with a topology inherited from the Tychonoff product topology of $\Omega_{\xi}(M, N)^{\mathbf{Z}}$, where each element z of F is

$$
\text { (2) } z=\sum_{f} n_{f, x}[f] \text {, }
$$

$n_{f, z} \in \mathbf{Z}$ for each $f \in \Omega_{\xi}(M, N)$,

$$
\text { (3) } \sum_{f}\left|n_{f, z}\right|<\infty
$$

In particular $[n f]-n[f] \in \mathrm{B}$, where $1 f=f, n f=f \circ(n-1) f$ for each $1<n \in \mathbf{N}, f+g:=f \circ g$. We call $L_{\xi}(M, N)$ the loop group.
2.2. Proposition. The space $L_{\xi}(M, N)$ from $\S 2.1$ is the complete separable Abelian Hausdorff topological group; it is non-discrete, perfect and has the cardinality c .

Proof follows from §I.2.7 and §2.1, since in view of Formulas 2.1.(1-3) for each $f \in L_{\xi}(M, N)$ there are $g_{j} \in \Omega_{\xi}(M, N)$ such that $f=f_{1}-f_{2}$, where $\gamma\left(g_{j}\right)=f_{j}$ for each $j \in\{1,2\}$. Therefeore, γ is the topological embedding such that $\gamma(f+g)=\gamma(f)+\gamma(g), \gamma(e)=e$.
2.3. Theorem. Let $G=L_{\xi}(M, N)$ be the same group as in $\S 2.1, \xi=$ (t, s) or $\xi=t$ with $0 \leq t \in \mathbf{R}, s_{0} \in \mathbf{N}_{\mathbf{0}}$.
(1) If $\operatorname{At}^{\prime}(\bar{M})$ has $\operatorname{card}\left(\Lambda_{\bar{M}}^{\prime}\right) \geq 2$, then G is isomorphic with $G_{1}=$ $L_{\xi}(\tilde{M}, N)$, where $\tilde{M}=U_{1}^{\prime} \cup U_{2}^{\prime}$ (see §I.2.5). Moreover, $T_{\eta} G$ is the Banach space for each $\eta \in G$ and G is ultrametrizable.
(2) If $1 \leq t+s$, then G is an analytic manifold and for it the mapping $\tilde{E}: \tilde{T} G \rightarrow G$ is defined, where $\tilde{T} G$ is the neighbourhood of G in $T G$ such that $\tilde{E}_{\eta}(V)=\bar{e} x p_{\eta(z)} \circ V_{\eta}$ from some neighbourhood \bar{V}_{η} of the zero section in $T_{\eta} G \subset T G$ onto some neighbourhood $W_{\eta} \ni \eta \in G, \bar{V}_{\eta}=\bar{V}_{e} \circ \eta, W_{\eta}=W_{e} \circ \eta$, $\eta \in G$ and \tilde{E} belongs to the class $C(\infty)$ by V, \tilde{E} is the uniform isomorphism of uniform spaces \bar{V} and W.
(3) There are atlases $\tilde{A} t(T G)$ and $\tilde{A} t(G)$ for which \tilde{E} is locally analytic. Moreover, G is not locally compact for each $0 \leq t$.

Proof. The first statement follows immediately from Theorem I.2.17 and §2.1. Therefeore, to prove the second statement it is sufficient to consider the manifold M with a finite atlas $A t(M)$.

Let $V_{\eta} \in T_{\eta} G$ for each $\eta \in G, V \in C_{0}(\xi, G \rightarrow T G)$, suppose also that $\tilde{\pi} \circ V_{\eta}=\eta$ be the natural projection such that $\tilde{\pi}: T G \rightarrow G$, then V is a vector field on G of class $C_{0}(\xi)$. The disjoint and analytic atlases $\operatorname{At}\left(C_{0}(\xi, M \rightarrow N)\right)$ and $\operatorname{At}\left(C_{0}(\xi, M \rightarrow T N)\right)$ induce disjoint clopen atlases in G and $T G$ with the help of the corresponding equivalence relations and ultrametrics in these quotient spaces. These atlases are countable, since G and $T G$ are separable. In view of Theorem I.2.10 the space $T_{\eta} G$ is Banach and not locally compact, hence it is infinite-dimensional over K.

In view of Formulas I.2.6.2.(1-7) the multiplications

$$
\text { (1) } R_{f}: G \rightarrow G, g \mapsto g \circ f=R_{f}(g) \text { and }
$$

(2) $\alpha_{h}: C_{0}^{0}\left(\xi,\left(M, s_{0}\right) \rightarrow\left(N, y_{0}\right)\right) \rightarrow C_{0}^{0}\left(\xi,\left(M, s_{0}\right) \rightarrow\left(N, y_{0}\right)\right), \alpha_{h}(v)=v \circ h$ for $f, g \in G$ and $h, v \in C_{0}^{0}\left(\xi_{,}\left(M, s_{0}\right) \rightarrow\left(N, y_{0}\right)\right)$ belong to the class $C(\infty)$.

Using Formulas (1,2) as in §I.2.10 we get, that the vector field V on G of class $C_{0}(\xi)$ has the form

$$
\text { (3) } V_{\eta(x)}=v(\eta(x)) \text {, }
$$

where v is a vector field on N of the class $C_{0}(\xi), \eta \in G$,

$$
v\left(<f>_{K, \xi}(x)\right):=\left\{v(g(x)): g \in<f>_{K, \xi}\right\} .
$$

Since $\overline{e x p}: \tilde{T} N \rightarrow N$ is analytic on the corresponding charts (see §I.2.8.). In view of Formulas 1.2.8.(1-4) $\tilde{E}(V)=\bar{e} x p \circ V$ has the necessary properties, where $\bar{e} x p$ is considered on $A t^{\prime \prime}(N)$ with $\psi^{\prime \prime}{ }_{i}\left(V_{i}{ }_{i}\right)$ being K-convex in the Banach space Y. Therefore, due to Formula (3) we have
(4) $\tilde{E}_{\eta}: T_{\eta} G \supset \bar{V}_{\eta} \rightarrow W_{\eta} \subset G$
are continuous and

$$
\text { (5) } \tilde{E}_{\eta}(V)=\bar{e} x p_{\eta(x)} v(\eta(x))
$$

where $x \in M$, consequently, \tilde{E} is of class $C(\infty)$.
2.4. Note. Let $\Omega_{\xi}^{\{k\}}(M, N)$ be the same submonoid as in $\S 1.3 .5$ such that $c>0$ and $c^{\prime}>0$. Then it generates the loop group $G^{\prime}:=L_{\xi}^{\{k\}}(M, N)$ as in $\S 2.1$ such that G^{\prime} is the dense subgroup in $G=L_{\xi}(M, N)$.
2.5. Theorem. On the group $G=L_{\xi}(M, N)$ from $\S 2.1$ and for each $b \in$ \mathbf{C} there exist probability quasi-invariant and pseudo-differentiable of order b measures μ with values in \mathbf{R} and $\mathbf{K}_{\mathbf{q}}$ for each prime number q such that $q \neq p$ relative to a dense subgroup G^{\prime}.

Proof. In view of Theorem 2.3 it is sufficient to consider the case of M with the finite atlas $A t^{\prime}(M)$. Let the operator \tilde{A} be defined on $T C_{0}^{0}\left(\xi,\left(M, s_{0}\right) \rightarrow\right.$ (N, y_{0})) by Formulas I.3.6.(3,4). The factorization by the equivalence relation \tilde{K}_{ξ} from $\S 1.3 .6$ and the Grothendieck construction of $\S 2.1$ produces the following mapping $\tilde{\Upsilon}$ from the corresponding neighbourhood of the zero section
in $T L_{\xi}(M, N)$ into a neighbourhood of the zero section either in $T L_{\xi^{\prime}}(M, Y)$ for $\operatorname{dim}_{\mathbf{K}} M<\infty$ or into $c_{0}\left(\left\{T L_{\xi^{\prime}}\left(M_{a}, Y\right): a \in \mathbf{N}\right\}\right)$ for $\operatorname{dim}_{\mathbf{K}} M=\aleph_{0}$.

Therefore they are continuously strongly differentiable with $(D \tilde{\Upsilon}(f))(v)=$ $\tilde{\Upsilon}(f)(v)$, where f and $v \in V_{N} \subset T_{\varepsilon} L_{\xi}(M, N), V_{N}$ is the corresponding neighbourhoods of zero sections for the element $e=<\omega_{0}>_{K, k}$. In view of the existence of the mapping \tilde{E} (see Formulas 2.3.(4,5)) for $\tilde{T} G$ there exists the local diffeomorphism

$$
(1) \Upsilon: W_{e} \rightarrow V_{0}^{t}
$$

induced by \tilde{E} and $\tilde{\Upsilon}$, where W_{e} is a neighbourhood of e in $G, V^{\prime}{ }_{0}$ is a neighbourhood of zero either in the Banach subspace \tilde{H} of $T_{\varepsilon} L_{\xi^{\prime}}(M, Y)$ for $\operatorname{dim}_{K} M<\infty$ or in the Banach subspace \tilde{H} of $c_{0}\left(\left\{T_{e} L_{\xi^{\prime}}\left(M_{a}, Y\right): a \in \mathbf{N}\right\}\right)$ for $\operatorname{dim}_{K} M=\aleph_{0}$.

Let now W_{e}^{\prime} be a neighbourhood of e in G^{\prime} such that $W_{e}^{\prime} W_{e}=W_{e}$. It is possible, since the topology in G and G^{\prime} is given by the corresponding ultrametrics and there exists W_{e} with $W_{e} W_{e}=W_{e}$, hence it is sufficient to take $W_{\varepsilon}^{\prime} \subset W_{e}$. For $g \in W_{e}, v=\tilde{E}^{-1}(g), \phi \in W_{\xi}^{\prime}$ the following operator

$$
\text { (2) } S_{\phi}(v):=\Upsilon \circ L_{\phi} \circ \Upsilon^{-1}(v)-v
$$

is defined for each $(\phi, v) \in W_{e}^{\prime} \times V_{0}^{\prime}$, where $L_{\phi}(g):=\phi \circ g$. Then $S_{\phi}(v) \in$ $V{ }_{0} \subset V_{0}^{\prime}$, where $V^{\prime \prime}{ }_{0}$ is an open neighbourhood of the zero section either in the Banach subspace \tilde{H}^{\prime} of $T_{e} G^{\prime}$ for $\operatorname{dim}_{K} M<\infty$ or in the Banach subspace \tilde{H}^{\prime} of $c_{0}\left(\left\{T_{e} G_{a}^{\prime}: a \in \mathbf{N}\right\}\right)$ for $\operatorname{dim}_{\mathbf{K}} M=\aleph_{0}$, where $G_{a}^{\prime}=L_{\xi}^{\{k\}}\left(M_{a}, N\right)$. Moreover, $S_{\phi}(v)$ is the $C(\infty)$-mapping by ϕ and v. As in §I.3.6 a quasiinvariant and pseudo-differentiable of order b measure ν on $V_{0}^{\prime} \subset \tilde{H}$ exists relative to $\phi \in W_{e}^{\prime}$, where

$$
\text { (3) } \nu(d x)=\bigotimes_{j=1}^{\infty} \nu_{l(j)}\left(d x^{j}\right)
$$

and Conditions I.3.6.(13,14,17-20) are satisfied.
More general classes of quasi-invariant and pseudo-differentiable of order b measures ν with values in $[0, \infty)$ or in K_{q} exist on V_{0}^{\prime} relative to the action of $\phi \in W_{e}^{\prime},(\phi, v) \mapsto v+S_{\phi}(v)$, where $v \in V_{0}^{\prime}$.

In view of Formulas ($1-3$) the measure ν induces a measure $\tilde{\mu}$ on W_{e} with the help of Υ such that

$$
\text { (4) } \tilde{\mu}(A)=\nu(\Upsilon(A)) \text { for each } A \in B f\left(W_{e}\right)
$$

since $\|\nu\|\left(V_{0}^{\prime}\right)>0$. The groups G and G^{\prime} are separable and ultrametrizable, hence there are locally finite coverings $\left\{\phi_{i} \circ W_{i}: i \in \mathbf{N}\right\}$ of G and $\left\{\phi_{i} \circ W_{i}^{\prime}:\right.$ $i \in \mathbf{N}\}$ of G^{\prime} with $\phi_{i} \in G^{\prime}$ such that W_{i} are open subsets in W_{e} and W_{i}^{\prime} are open subsets in W^{\prime} e, that is,

$$
\bigcup_{i=1}^{\infty} \phi_{i} \circ W_{i}=G \text { and } \bigcup_{i=1}^{\infty} \phi_{i} \circ W_{i}^{\prime}=G^{\prime}
$$

where $\phi_{1}=e, W_{1}=W_{e}$ and $W_{1}^{\prime}=W^{\prime}$. [6]. Then $\tilde{\mu}$ can be extended onto G by the following formula

$$
\text { (5) } \mu(A):=\left(\sum_{i=1}^{\infty} \tilde{\mu}\left(\left(\phi_{i}^{-1} \circ A\right) \cap W_{i}\right) r^{i}\right) /\left(\sum_{i=1}^{\infty} \tilde{\mu}\left(W_{i}\right) r^{i}\right)
$$

for each $A \in B f(G)$, where $0<r<1$ for real $\tilde{\mu}$ or $r=q$ for $\tilde{\mu}$ with values in $K_{\mathbf{q}}$. In view of Formulas $(4,5)$ this μ is the desired measure, which is quasi-invariant and pseudo-differentiable of order b relative to the subgroup $G^{\prime \prime}=G^{\prime}$ (see also §§I.3.2-4).

3 Representations of loop groups.

3.1. Let μ be a real non-negative quasi-invariant relative to G^{\prime} measure on $(G, B f(G))$ as in Theorem 2.5. Assume also that $H:=L^{2}(G, \mu, C)$ is the standard Hilbert space of equivalence classes of functions $f: G \rightarrow \mathbf{C}$ for which absolute values $|f|$ are square-integrable by μ. Suppose that $U(H)$ is the unitary group on H in a topology induced from a Banach space $L(H \rightarrow$ H) of continuous linear operators supplied with the operator norm.

Theorem. There exists a strongly continuous injective homomorphism $T: G^{\prime} \rightarrow U(H)$.

Proof. Let f and h be in H, their scalar product is given by the standard formula

$$
(1)(f, h):=\int_{G} \bar{h}(g) f(g) \mu(d g)
$$

where f and $h: G \rightarrow \mathbf{C}, \bar{h}$ denotes the complex conjugated function h. There exists the regular representation

$$
\text { (2) } T: G^{\prime} \rightarrow U(H)
$$

defined by the following formula:

$$
\text { (3) } \mathrm{T}_{z} f(g):=[\rho(z, g)]^{1 / 2} f\left(z^{-1} g\right)
$$

where

$$
\text { (4) } \rho(z, g)=\mu_{z}(d g) / \mu(d g), \mu_{z}(S):=\mu\left(z^{-1} S\right)
$$

for each $S \in B f(G), z \in G^{\prime}$. For each fixed z the quasi-invariance factor $\rho(z, g)$ is continuous by g, hence $\mathrm{T}_{z} f(g)$ is measurable, if $f(g)$ is measurable (relative to $A f(G, \mu)$ and $B f(C))$. Therefore,
(5) $\left(\mathrm{T}_{x} f(g), \mathrm{T}_{z} h(g)\right)=\int_{G} \bar{h}\left(z^{-1} g\right) f\left(z^{-1} g\right) \rho(z, g) \mu(d g)=(f, h)$,
consequently, T_{z} is the unitary operator for each $z \in G^{\prime}$. From
(6) $\rho\left(z^{\prime} z, g\right)=\rho\left(z,\left(z^{\prime}\right)^{-1} g\right) \rho\left(z^{\prime}, g\right)=\left[\mu_{z^{\prime} x}(d g) / \mu_{z^{\prime}}(d g)\right]\left[\mu_{x^{\prime}}(d g) / \mu(d g)\right]$
it follows that

$$
\text { (7) } \mathrm{T}_{z^{\prime}} \mathrm{T}_{x}=\mathrm{T}_{z^{\prime} x}, \mathrm{~T}_{i d}=I \text { and } \mathrm{T}_{z^{-1}}=\mathrm{T}_{z}^{-1}
$$

where I is the unit operator on H.
The embedding of $T_{e} G^{\prime}$ into $T_{e} G$ is the compact operator. The measure μ on G is induced by the measure on $c_{0}\left(\omega_{0}, K\right)$, where ω_{0} is the first countable ordinal. In view of Theorems 3.12 and 3.28 [13] for each $\delta>0$ and $\left\{f_{1}, \ldots, f_{n}\right\} \subset H$ there exists a compact subset B in G such that

$$
\text { (8) } \sum_{i=1}^{n} \int_{G \backslash B}\left|f_{i}(g)\right|^{2} \mu(d g)<\delta^{2}
$$

Therefore, there exists an open neighbourhood W^{\prime} of e in G^{\prime} and an open neighbourhood S of e in G such that $\rho(z, g)$ is continuous and bounded on $W^{\prime} \times W^{\prime} \circ S$, where $S \subset W^{\prime} \circ S \subset G$. In view of Formulas (5-8), Theorems 2.3 and 2.5 and the Hölder inequality we have

$$
\lim _{j \rightarrow \infty} \sum_{i=1}^{n}\left\|\left(\mathrm{~T}_{z_{j}}-I\right) f_{i}\right\|_{H}=0
$$

for each sequence $\left\{z_{j}: j \in \mathbf{N}\right\}$ converging to e in G^{\prime}. Indeed, for each $v>0$ and a continuous function $f: G \rightarrow C$ with $\|f\|_{H}=1$ there is an open
neighbourhood V of $i d$ in G^{\prime} (in the topology of G^{\prime}), such that $|\rho(z, g)-1|<v$ for each $z \in V$ and each $g \in F$ for some open F in G, id $\in F$ with

$$
\mu_{z}^{f}(G \backslash F)<v \text { for each } z \in V, \text { where } \mu^{f}(d g):=|f(g)| \mu(d g)
$$

and $f \in\left\{f_{1}, \ldots, f_{n}\right\}, n \in \mathbf{N}$. At first this can be done analogously for the corresponding Banach space from which μ was induced.

In H continuous functions $f(g)$ are dense, hence for each $0<v<1$ there exists $V^{\prime \prime}$ such that

$$
\int_{G}\left|f(g)-f(z g)(\rho(z, g))^{1 / 2}\right|^{2} \mu(d g)<4 v
$$

for each finite family $\left\{f_{j}\right\}$ with $\left\|f_{j}\right\|_{H}=1$ and $z \in V^{\prime}=V \cap V^{\prime \prime}$, where $V^{\prime \prime}$ is an open neighbourhood of id in G^{\prime} such that $\|f(g)-f(z g)\|_{H}<v$ for each $z \in V^{\prime \prime}$, consequently T is strongly continuous (that is, T is continuous relative to the strong topology on $U(H)$ induced from $L(H \rightarrow H)$, see its definition in [8]).

Moreover, T is injective, since for each $g \neq i d$ there is $f \in C^{0}(G, \mathbf{C}) \cap H$, such that $f(i d)=0, f(g)=1$, and $\|f\|_{H}>0$, so $T_{f} \neq I$.

Note. In general T is not continuous relative to the norm topology on $U(H)$, since for each $z \neq i d \in G^{\prime}$ and each $1 / 2>v>0$ there is $f \in H$ with $\|f\|_{H}=1$, such that $\left\|f-\mathrm{T}_{z} f\right\|_{H}>v$, when $\operatorname{supp}(f)$ is sufficiently small with $(z \circ \operatorname{supp}(f)) \cap \operatorname{supp}(f)=\emptyset$.
3.2. Theorem. Let G be a loop group with a real probability quasiinvariant measure μ relative to a dense subgroup G^{\prime} as in Theorem 2.5. Then μ may be chosen such that the associated regular unitary representation (see §9.1) of G^{\prime} is irreducible.

Proof. Let ν on $c_{0}\left(\omega_{0}, \mathrm{~K}\right)$ be of the same type as in $\S 3.23$ or $\S 3.30$ [13] or it is given by Formulas I.3.6.(13-20). For example, ν is generated by a weak distribution such that

$$
\text { (1) } \nu_{j}\left(d x^{j}\right):=c_{j} \exp \left(-\left|x^{j} / \xi^{j}\right|^{\gamma}\right) v\left(d x^{j}\right)
$$

where $c_{j}>0, \nu_{j}(K)=1, v$ is the Haar non-negative measure on K,

$$
\text { (2) } \lim _{j \rightarrow \infty} \xi^{j}=0
$$

$0 \neq \xi^{j} \in K, \gamma>0$ is fixed with

$$
\text { (3) } \sum_{j=1}^{\infty}\left|\xi^{j}\right|^{-\gamma} p^{-k\left(i_{j}, m_{j}\right)}<\infty
$$

(see about $k(i, m)$ in §I.3.5). Let a ν-measurable function $f: c_{0}\left(\omega_{0}, \mathbf{K}\right) \rightarrow \mathbf{C}$ be such that $\nu\left(\left\{x \in c_{0}\left(\omega_{0}, K\right): f(x+y) \neq f(x)\right\}=0\right.$ for each $y \in s p_{K}\left(e_{j}:\right.$ $j \in \mathbf{N})=: X_{o}$ with $f \in L^{1}\left(c_{0}\left(\omega_{0}, K\right), \nu, \mathbf{C}\right)$. Let also $P_{k}: c_{0}\left(\omega_{0}, K\right) \rightarrow$ $L(k)$ be projectors such that $P_{h}(x)=x_{k}$ for each $x=\left(\sum_{j \in \mathrm{~N}} x^{j} e_{j}\right)$, where $x_{k}:=\sum_{j=1}^{k} x^{j} e_{j}$ and $L(k):=s p_{K}\left(e_{1}, \ldots, e_{k}\right)$. Then analogously to the proof of Proposition II.3.1 [4] in view of Fubini theorem there exists a sequence of cylindrical functions

$$
\text { (4) } f_{k}(x)=f_{k}\left(x_{k}\right)=\int_{c_{0}\left(\omega_{0}, \mathrm{~K}\right) \Theta L(k)} f\left(P_{k} x+\left(I-P_{k}\right) y\right) \nu_{I-P_{k}}(d y)
$$

which converges to f in $L^{1}\left(c_{0}\left(\omega_{0}, \mathbf{K}\right), \nu, \mathbf{C}\right)$, where $\nu=\nu_{L(k)} \otimes \nu_{I-P_{h}}, \nu_{I-P_{h}}$ is the measure on $c_{0}\left(\omega_{0}, K\right) \ominus L(k)$. Each cylindrical function f_{k} is ν-almost everywhere constant on $c_{0}\left(\omega_{0}, K\right)$, since $L(k) \subset X_{0}$ for each $k \in N$, consequently, f is ν-almost everywhere constant on $c_{0}\left(\omega_{0}, K\right)$. Let Υ be the local diffeomorphism from Formula 2.5.(1). In view of Theorems 5.13 and 5.16 [16] these Banach spaces are topologically \mathbf{K}-linearly isomorphic with $c_{0}\left(\omega_{0}, \mathbf{K}\right)$. From the construction of G^{\prime} and μ with the help of Υ and ν as in $\S 2.5$ it follows that if a function $f \in L^{1}(G, \mu, C)$ satisfies the following condition $f^{h}(g)=f(g)(\bmod \mu)$ by $g \in G$ for each $h \in G^{\prime}$, then $f(x)=$ const $(\bmod \mu)$, where $f^{h}(g):=f(h g), g \in G$.

Let $f(g)=\operatorname{ch}(g)$ be the characteristic function of a subset $U, U \subset G$, $U \in A f(G, \mu)$, then $f(h g)=1 \Leftrightarrow g \in h^{-1} U$. If $f^{h}(g)=f(g)$ is true by $g \in G$ μ-almost everywhere, then

$$
\text { (5) } \mu\left(\left\{g \in G: f^{h}(g) \neq f(g)\right\}\right)=0
$$

that is $\mu\left(\left(h^{-1} U\right) \Delta U\right)=0$, consequently, the measure μ satisfies the condition (P) from §VIII.19.5 [8], where $A \Delta B:=(A \backslash B) \cup(B \backslash A)$ for each $A, B \subset G$. For each subset $E \subset G$ the outer measure $\mu^{*}(E) \leq 1$, since $\mu(G)=1$ and μ is non-negative [2], consequently, there exists $F \in B f(G)$ such that $F \supset E$ and $\mu(F)=\mu^{*}(E)$. This F may be interpreted as the least upper bound in $B f(G)$ relative to the latter equality. In view of Proposition VIII.19.5 [8] the measure μ is ergodic, that is for each $U \in A f(G, \mu)$ and $F \in A f(G, \mu)$ with $\mu(U) \times \mu(F) \neq 0$ there exists $h \in G^{\prime}$ such that $\mu((h \circ E) \cap F) \neq 0$.

From Theorem I.1.2 [4] it follows that ($G, B f(G)$ is a Radon space, since G is separable and complete. Therefore, a class of compact subsets approximates from below each measure $|f(g)| \mu(d g)$, where $f \in L^{2}(G, \mu, C)$. Due to

Egorov Theorem 2.3.7 [7] for each $\epsilon>0$ and for each sequence $f_{n}(g)$ converging to $f(g)$ for μ-almost every $g \in G$, when $n \rightarrow \infty$, there exists a compact subset K in G such that $\mu(G \backslash K)<\epsilon$ and $f_{n}(g)$ converges on K uniformly by $g \in K$, when $n \rightarrow \infty$. Hence in view of the Stone-Weierstrass Theorem A. 8 [8] an algebra $V(Q)$ of finite pointwise products of functions from the following space

$$
\text { (6) } \operatorname{spc}\left\{\psi(g):=\rho^{1 / 2}(h, g): h \in G^{\prime}\right\}=: Q
$$

is dense in H, since $\rho(e, g)=1$ for each $g \in G$ and $L_{h}: G \rightarrow G$ are diffeomorphisms of the manifold G, where $L_{h}(g):=h g$.

For each $m \in \mathbf{N}$ there are locally analytic curves $S\left(\zeta, \phi_{j}\right)$ in G^{\prime} with analytic restrictions $\left.S\left(\zeta, \phi_{j}\right)\right|_{B(K, 0,1)}$, where $j=1, \ldots, m$ and $\zeta \in K$ is a parameter, such that

$$
S\left(0, \phi_{j}\right)=e \text { and }\left.\left(\theta S\left(\zeta, \phi_{j}\right) / \theta \zeta\right)\right|_{\zeta=0} \text { are linearly independent in } T_{e} G^{\prime}
$$

for $j=1, \ldots, m$, since G^{\prime} is the infinite-dimensional group, which is complete relative to its own uniformity. In accordance with $\S 2.5$ there exists infinitely pseudo-differentiable μ on G (that is, of order l for each $l \in \mathbf{N}$) relative to $S\left(\zeta, \phi_{j}\right)$ for each j. If two real non-negative quasi-invariant relative to G^{\prime} measures μ and λ on G are equivalent, then the corresponding regular representations T^{μ} and T^{λ} are equivalent, since the mapping

$$
f(g) \mapsto(\mu(d g) / \lambda(d g))^{1 / 2} f(g)
$$

establishes an isomorphism of $L^{2}(G, \mu, C)$ with $L^{2}(G, \lambda, C)$, where $f \in L^{2}(G, \mu, \mathbf{C})$. Then the following condition $\operatorname{det}(\Psi(g))=0$ defines an analytic submanifold G_{Ψ} in G of codimension over K no less than one:

$$
\text { (7) } \operatorname{codim}_{K} G \geq 1
$$

where $\Psi(g)$ is a matrix function of the variable $g \in G$ with matrix elements

$$
\text { (8) } \Psi_{l, j}(g):=P D_{c}\left(l, \rho^{1 / 2}\left(S\left(\zeta, \phi_{j}\right), g\right)\right)
$$

for $l \geq 1$. If $f \in H$ is such that

$$
\text { (9) }\left(f(g), \rho^{1 / 2}(\phi, g)\right)_{H}=0
$$

for each $\phi \in G^{\prime} \cap W$, then

$$
\text { (10) } P D_{c}\left(l,\left(f(g), \rho^{1 / 2}\left(S\left(\zeta, \phi_{j}\right), g\right)\right)_{H}\right)=0
$$

But $\mathrm{V}(Q)$ is dense in H and in view of Formulas ($6-10$) this means that $f=0$, since for each m there are $S\left(\zeta, \phi_{j}\right) \in G^{\prime} \cap W$ such that $\operatorname{det} \Psi(g) \neq 0$ μ-almost everywhere on G. If $\|f\|_{H}>0$, then $\mu(\operatorname{supp}(f))>0$, consequently, $\mu\left(\left(G^{\prime} \operatorname{supp}(f)\right) \cap W\right)=1$, since $G^{\prime} U=G$ for each open U in G and for each $\epsilon>0$ there exists an open U such that $U \supset \operatorname{supp}(f)$ and $\mu(U \backslash \operatorname{supp}(f))<\epsilon$.

Therefore, Q is dense in H. This means that the unit vector f_{0} is cyclic, where $f_{0} \in H$ and $f_{0}(g)=1$ for each $g \in G$. The group G is Abelian, hence there exists a unitary operator $U: H \rightarrow H$ such that

$$
\text { (11) } U^{-1} \mathrm{~T}_{h} U=F_{h}
$$

are operators of multiplication on functions $F_{h} \in L^{\infty}(G, \mu, C)$ for each $h \in$ G^{\prime}, where
(12) $F_{h}(g)=\exp \left(2 \pi i f_{h}(g)\right)$,
$g \in G, f_{h} \in L^{0}(G, \mu, \mathbf{R}), L^{0}(G, \mu, \mathbf{R})$ is a Frechét space of classes of equivalent μ-measurable functions $f: G \rightarrow \mathbf{R}$, which is supplied with a metric
(13) $d(f, v):=\int_{G} \min (1,|f(g)-v(g)|) \mu(d g)$,
$i=(-1)^{1 / 2}$ (see §IV. 8 and Theorem X.2.1 and Theorem X.4.2 and Segal Theorem in \S X. 9 [5]). The following set ($c l \operatorname{spc}\left\{F_{h}: h \in G^{\prime}\right\}$) is not contained in any ideal of the form $\{F: \operatorname{supp}(F) \subset G \backslash A\}$ with $A \in A f(G, \mu)$ and $\mu(A)>0$, since $\left|F_{h}(g)\right|=1$ for each $(h, g) \in G^{\prime} \times G$, where $c l(E)$ is taken in $L^{\infty}(G, \mu, C)$ for its subset E. Then $\left\{F_{h}: h \in G^{\prime}\right\}$ is not contained in any set

$$
\left\{F=\exp (2 \pi i f): f \in L^{0}(G, \mu, \mathbf{C}), \operatorname{supp}(f) \subset G \backslash A\right\}
$$

with $A \in A f(G, \mu)$ and $\mu(A)>0$, since μ is ergodic relative to G^{\prime}. From the construction of μ (see Formulas (1-3) and I.3.6.(13-17,21-24)) it follows that for each $f_{1, j}$ and $f_{2, j} \in H, j=1, \ldots, n, n \in \mathbf{N}$ and each $\epsilon>0$ there exists $h \in G^{\prime}$ such that

$$
\left|\left(T_{h} f_{1, j}, f_{2, j}\right)_{H}\right| \leq \epsilon\left|\left(f_{1, j}, f_{2, j}\right)_{H}\right|
$$

when $\left|\left(f_{1, j}, f_{2, j}\right)_{H}\right|>0$, hence

$$
\left|\left(F_{h} U^{-1} f_{1, j}, U^{-1} f_{2, j}\right)_{H}\right| \leq \epsilon\left|\left(U^{-1} f_{1, j}, U^{-1} f_{2, j}\right)_{H}\right|=\epsilon\left|\left(f_{1, j}, f_{2, j}\right)_{H}\right|
$$

since G is the Radon space by Theorerm I.1.2 [4] and G is not locally compact. Therefore, for each $\tilde{f}_{1, j}$ and $\tilde{f}_{2, j} \in H, j=1_{2} \ldots, n, n \in \mathbf{N}$ and $\epsilon>0$ there exists $h \in G^{\prime}$ for which $\left|\left(F_{h} \tilde{f}_{1, j}, \tilde{f}_{2, j}\right)_{H}\right| \leq \epsilon\left|\left(\tilde{f}_{1, j}, \tilde{f}_{2, j}\right)_{H}\right|$ for each $j=1, \ldots, n$, when $\left|\left(\tilde{f}_{1, j}, \tilde{f}_{2, j}\right)_{H}\right|>0$, since $\boldsymbol{U H}=H$. This means that there is not any finite-dimensional G^{\prime}-invariant subspace H^{\prime} in H, that is, $F_{h} H^{\prime} \subset H^{\prime}$ for each $h \in G^{\prime}$.

We suppose that λ is a probability Radon measure on G^{\prime} such that λ has not any atoms and $\operatorname{supp}(\lambda)=G^{\prime}$. In view of the strong continuity of the regular representation there exists the S. Bochner integral $\int_{G} T_{h} f(g) \mu(d g)$ for each $f \in H$, which implies its existence in the weak (B. Pettis) sence. The measures μ and λ are non-negative and bounded, hence $H \subset L^{1}(G, \mu, C)$ and $L^{2}\left(G^{\prime}, \lambda, C\right) \subset L^{1}\left(G^{\prime}, \lambda, C\right)$ due to the Cauchy inequality. Therefore, we can apply below Fubini theorem (see §II.16.3 [8]). Let $f \in H$, then there exists a countable orthonormal base $\left\{f^{j}: j \in \mathbf{N}\right\}$ in $H \ominus \mathbf{C} f$. Then for each $n \in \mathbf{N}$ the following set
$B_{n}:=\left\{q \in L^{2}\left(G^{\prime}, \lambda, \mathbf{C}\right):\left(f^{j}, f\right)_{H}=\int_{G^{\prime}} q(h)\left(f^{j}, T_{h} f_{0}\right)_{H} \lambda(d h)\right.$ for $\left.j=0, \ldots, n\right\}$
is non-empty, since the unit vector f_{0} is cyclic, where $f^{0}:=f$. There exists $\infty>R>\|f\|_{H}$ such that $B_{n} \cap B^{R}=: B_{n}^{R}$ is non-empty and weakly compact for each $n \in \mathbf{N}$, since B^{R} is weakly compact, where

$$
B^{R}:=\left\{q \in L^{2}\left(G^{\prime}, \lambda, \mathbf{C}\right):\|q\| \leq R\right\}
$$

(see the Alaoglu-Bourbaki theorem in $\S(9.3 .3)$ [15]). Therefore, B_{n}^{R} is a centered system of closed subsets of B^{R}, that is,

$$
\cap_{n=1}^{m} B_{n}^{R} \neq \emptyset \text { for each } m \in \mathbf{N}
$$

hence it has a non-empty intersection, consequently, there exists $q \in L^{2}\left(G^{\prime}, \lambda, C\right)$ such that

$$
\text { (14) } f(g)=\int_{G^{\prime}} q(h) \mathrm{T}_{h} f_{0}(g) \lambda(d h)
$$

for μ-almost each $g \in G$. If $F \in L^{\infty}(G, \mu, \mathbf{C}), f_{1}$ and $f_{2} \in H$, then there exist q_{1} and $q_{2} \in L^{2}\left(G^{\prime}, \lambda, C\right)$ satisfying equation (14). Therefore,
(15) $\left(f_{1}, F f_{2}\right)_{H}=\int_{G} \int_{G^{\prime}} \int_{G^{\prime}} \bar{q}_{1}\left(h_{1}\right) q_{2}\left(h_{2}\right) F(g) \rho_{\mu}^{1 / 2}\left(h_{1}, g\right) \rho_{\mu}^{1 / 2}\left(h_{2}, g\right) \lambda\left(d h_{1}\right) \lambda\left(d h_{2}\right) \mu(d g)$.

Let
(16) $\xi(h):=\int_{G} \int_{G^{\prime}} \int_{G^{\prime}} \bar{q}_{1}\left(h_{1}\right) q_{2}\left(h_{2}\right) \rho_{\mu}^{1 / 2}\left(h_{1}, g\right) \rho_{\mu}^{1 / 2}\left(h h_{2}, g\right) \lambda\left(d h_{1}\right) \lambda\left(d h_{2}\right) \mu(d g)$.

Then there exists $\beta(h) \in L^{2}\left(G^{\prime}, \lambda, C\right)$ such that
(17) $\int_{G^{\prime}} \beta(h) \xi(h) \lambda(d h)=\left(f_{1}, F f_{2}\right)_{H}=: c$.

To prove this we consider two cases. If $c=0$ it is sufficient to take β orthogonal to ξ in $L^{2}\left(G^{\prime}, \lambda, C\right)$. Each function $q \in L^{2}\left(G^{t}, \lambda, C\right)$ can be written as $q=q^{1}-q^{2}+i q^{3}-i q^{4}$, where $q^{j}(h) \geq 0$ for each $h \in G^{\prime}$ and $j=1, \ldots, 4$, hence we obtain the corresponding decomposition for ξ :

$$
(18) \xi=\sum_{j, k} b^{j, k} \xi^{j, k}
$$

where $\xi^{j, k}$ corresponds to a pair $\left(q_{1}^{j}, q_{2}^{k}\right)$, where $b^{j, k} \in\{1,-1, i,-i\}$. If $c \neq 0$ we can choose (j_{0}, k_{0}) for which $\xi^{j_{0}, k_{0}} \neq 0$ and

$$
\text { (19) } \beta \text { is orthogonal to others } \xi^{j, k} \text { with }(j, k) \neq\left(j_{0}, k_{0}\right) \text {. }
$$

Otherwise, if $\xi^{j, k}=0$ for each (j, k), then $q_{l}^{j}(h)=0$ for each (l, j) and λ-almost every $h \in G^{\prime}$, since due to Formula (16):
$\xi(0)=\int_{G} \mu(d g)\left(\int_{G^{\prime}} \bar{q}_{1}\left(h_{1}\right) \rho_{\mu}^{1 / 2}\left(h_{1}, g\right) \lambda\left(d h_{1}\right)\right)\left(\int_{G^{\prime}} q_{2}\left(h_{2}\right) \rho_{\mu}^{1 / 2}\left(h_{2}, g\right) \lambda\left(d h_{2}\right)\right)=0$
and this implies $c=0$, which is the contradiction with the assumption $c \neq$ 0. Hence due to Formula (18) there exists β satisfying Formula (17) and Condition (19).

Since $L^{2}\left(G^{\prime}, \lambda, C\right)$ is infinite-dimensional, then for each finite families

$$
\left\{a_{1}, \ldots, a_{m}\right\} \subset L^{\infty}(G, \mu, \mathbf{C}) \text { and }\left\{f_{1}, \ldots, f_{m}\right\} \subset H
$$

there exists $\beta(h) \in L^{\mathbf{2}}\left(G^{\prime}, \lambda, \mathbf{C}\right)$, such that

$$
\beta \text { is orthogonal to } \int_{G} \bar{f}_{s}(g)\left[f_{j}\left(h^{-1} g\right)\left(\rho_{\mu}(h, g)\right)^{1 / 2}-f_{j}(g)\right] \mu(d g)
$$

for each $s, j=1, \ldots, m$. Hence each operator of multiplication on $a_{j}(g)$ belongs to A_{G} ", since due to Formula (17) and Condition (19) there exists $\beta(h)$ such that

$$
\begin{gathered}
\left(f_{a}, a_{j} f_{l}\right)=\int_{G} \int_{G^{\prime}} \bar{f}_{s}(g) \beta(h)\left(\rho_{\mu}(h, g)\right)^{1 / 2} f_{l}\left(h^{-1} g\right) \lambda(d h) \mu(d g) \\
=\int_{G} \int_{G^{\prime}} \bar{f}_{s}(g) \beta(h)\left(\mathrm{T}_{h} f_{l}(g)\right) \lambda(d h) \mu(d g) \text { and } \\
\int_{G} \bar{f}_{s}(g) a_{j}(g) f_{l}(g) \mu(d g)=\int_{G} \int_{G^{\prime}} \bar{f}_{s}(g) \beta(h) f_{l}(g) \lambda(d h) \mu(d g)=\left(f_{0}, a_{j} f_{l}\right) .
\end{gathered}
$$

Hence A_{G} " contains subalgebra of all operators of multiplication on functions from $L^{\infty}(G, \mu, C)$.

Let us remind the following. A Banach bundle B over a Hausdorff space G^{\prime} is a bundle $<B, \pi>$ over G^{\prime}, together with operations and norms making each fiber $B_{h}\left(h \in G^{\prime}\right)$ into a Banach space such that
$B B(i) x \mapsto\|x\|$ is continuous from B into \mathbf{R};
$B B(i i)$ the operation + is continuous as a function from

$$
\{(x, y) \in B \times B: \pi(x)=\pi(y)\} \text { into } B ;
$$

$B B(i i i)$ for each $\lambda \in C$ the map $x \mapsto \lambda x$ is continuous from B into B;
$B B(i v)$ if $h \in G^{\prime}$ and $\left\{x_{i}\right\}$ is any net of elements of B such that $\left\|x_{i}\right\| \rightarrow 0$
and $\pi\left(x_{i}\right) \rightarrow h$ in G^{\prime}, then $x_{i} \rightarrow 0_{h}$ in B,
where $\pi: B \rightarrow G^{\prime}$ is a bundle projection, $B_{h}:=\pi^{-1}(h)$ is the fiber over h (see §II.13.4 [8]). If G^{\prime} is a Hausdorff topological group, then a Banach algebraic bundle over G^{t} is a Banach bundle $B=<B, \pi>$ over G^{H} together with a binary operation \bullet on B satisfying the following Conditions $A B(i-v)$:
$A B(i) \pi(b \bullet c)=\pi(b) \pi(c)$ for b and $c \in B ;$
$A B(i i)$ for each x and $y \in G^{\prime}$ the product \bullet is bilinear from $B_{z} \times B_{y}$ into $B_{x y}$;
$A B(i i i)$ the product - on B is associative;
$A B(i v)\|b \bullet c\| \leq\|b\| \times\|c\|$ for each $b, c \in B ;$
$A B(v)$ the map - is continuous from $B \times B$ into B
(see §VIII.2.2 [8]). With G^{\prime} and a Banach algebra A the trivial Banach bundle $B=A \times G^{\prime}$ is associative, in particular let $A=C$ (see §VIII.2.7 [8]).

The regular representation T of G^{\prime} gives rise to a canonical regular $L^{2}(G, \mu, C)$ -projection-valued measure \bar{P} :

$$
\text { (20) } \bar{P}(W) f:=C h_{W} f
$$

where $f \in L^{2}(G, \mu, C), W \in B f(G), C h_{W}$ is the characteristic function of W. Therefore,

$$
\text { (21) } T_{h} \bar{P}(W)=\bar{P}(h \circ W) T_{h}
$$

for each $h \in G^{\prime}$ and $W \in B f(G)$, since $\rho\left(h, h^{-1} \circ g\right) \rho(h, g)=1=\rho(e, g)$ for each $(h, g) \in G^{\prime} \times G$,

$$
C h_{W}\left(h^{-1} \circ g\right)=C h_{h o W}(g) \text { and }
$$

(22) $\mathrm{T}_{h}(\bar{P}(W) f(g))=\rho\left(h^{-1}, g\right)^{1 / 2} \bar{P}(h \circ W) f\left(h^{-1} \circ g\right)$.

Thus $\langle T, \bar{P}\rangle$ is a system of imprimitivity for G^{\prime} over G, which is denoted T^{μ}, that is,
$S I(i) \mathrm{T}$ is a unitary representation of G^{\prime};
$S I(i i) \bar{P}$ is a reguialr $L^{2}(G, \mu, C)$-projection-valued Borel measure on G and
$S I(i i i) \mathrm{T}_{h} \bar{P}(W)=\bar{P}(h \circ W) \mathrm{T}_{h}$ for all $h \in G^{\prime}$ and $W \in B f(G)$.
For each $F \in L^{\infty}(G, \mu, C)$ let α_{F} be the operator in $L\left(L^{2}(G, \mu, C)\right)$ consisting of multiplication by F :

$$
\alpha_{F}(f)=F f \text { for each } f \in L^{2}(G, \mu, \mathbf{C})
$$

where $L(Z):=L(Z \rightarrow Z)$ (see §3.1). The map $F \mapsto \alpha_{F}$ is an isometric *isomorphism of $L^{\infty}(G, \mu, C)$ into $L\left(L^{2}(G, \mu, C)\right)$ (see §VIII.19.2[8]). Therefore, using the approach of this particular case given above we get, that Propositions VIII.19.2,5[8] are applicable in our situation.

If \bar{p} is a projection onto a closed H^{μ}-stable subspace of $L^{2}(G, \mu, C)$, then due to Formulas (20-22) \bar{p} commutes with all $\bar{P}(W)$. Hence \bar{p} commutes with α_{F} for each $F \in L^{\infty}(G, \mu, C)$, so by §VIII.19.2[8] $\bar{p}=\bar{P}(V)$, where $V \in B f(G)$. Also \bar{p} commutes with T_{h} for each $h \in G^{\prime}$, consequently, ($h \circ V) \backslash V$ and $\left(h^{-1} \circ V\right) \backslash V$ are μ-null for each $h \in G^{\prime}$, hence $\mu((h \circ V) \Delta V)=0$
for all $h \in G^{\prime}$. In view of the ergodicity of μ and Proposition VIII.19.5 [8] either $\mu(V)=0$ or $\mu(G \backslash V)=0$, hence either $\bar{p}=0$ or $\bar{p}=I$.
3.3. Theorem. On the loop group $G=L_{\xi}(M, N)$ from $\S 2.1$ there exists a family of continuous characters $\{\Xi\}$, which separate points of G.

Proof. In view of Lemma I.2.17 it is sufficient to consider the case of the submanifold \tilde{M} having no more than two charts. Then \tilde{M} is clopen in $c_{0}(\alpha, \mathbf{K})$, where $\tilde{M}=\overline{\bar{M}} \backslash\left\{s_{0}\right\}$.

Let at first $\operatorname{dim}_{\mathbf{K}} M<\aleph_{\mathbf{0}}$. The Haar measure $\lambda_{\alpha}: B f\left(\mathbf{K}^{\alpha}\right) \rightarrow \mathbf{Q}_{\mathbf{q}}$ with a prime number $q \neq p$ (see the Monna-Springer theorem in §8.4 [16]) induces the measure $\lambda_{\alpha}: B f(\tilde{M}) \rightarrow \mathrm{Q}_{\mathbf{q}}$, analogously for

$$
\text { (1) } N_{J}:=N \cap s p_{K}\left\{e_{j}: j \in J\right\}
$$

for each $\mathbf{N} \ni n \geq \alpha$ and $h \in L\left(N_{J}, \lambda_{n}, \mathbf{Q}_{\mathbf{q}}\right)$ there corresponds a measure $\nu_{J, h}$ on $B f\left(N_{J}\right)$ for which

$$
\text { (2) } \nu_{J, h}(d y)=h(y) \lambda_{n}(d y)
$$

and to $\nu_{J, h}$ there corresponds a differential form

$$
\text { (3) } w_{J, h}(y)=h(y) d y^{j_{1}} \wedge \ldots \wedge d y^{j_{n}},
$$

where $y \in N_{J}$ and $J:=\left\{j_{1}, \ldots, j_{n}\right\}$. Hence there exists its pull back $\left(\pi_{J} \tilde{f}\right)^{*} w$, where $\pi_{J}: c_{0}(\beta, \mathbf{K}) \rightarrow s p_{K}\left\{e_{j}: j \in J\right\}$ is the projection for each $J \subset \beta$, $f \in C_{0}^{0}(\xi, \tilde{M} \rightarrow N), \tilde{f}=P(l, s+1) f, l=[t]+1$ (see §I.2.11 and Corollary I.2.16).

As usually, for a mapping $h: \tilde{M} \rightarrow N_{J}$ of class $C(1)$ and a tensor T of the type ($0, k$) with components $T_{i_{1}}, \ldots, i_{k}$ defined for N_{J} we have:
(4) $\left(h^{*} T\right)_{l_{1}, \ldots, l_{h}}\left(x^{1}, \ldots, x^{\alpha}\right)=\left[\sum_{i_{1}, \ldots, i_{k}} T_{i_{1}}, \ldots, i_{k}\left(\partial y^{i_{1}} / \partial x^{l_{1}}\right) \ldots\left(\partial y^{i_{k}} / \partial x^{l_{k}}\right)\right]\left(y\left(x^{1}, \ldots ., x^{\alpha}\right)\right)$
such that $h^{*} T$ is defined for \tilde{M}, where $\left(x^{1}, \ldots, x^{\alpha}\right)$ are coordinates in \tilde{M} induced from K^{α} and $\left(y^{1}, \ldots, y^{n}\right)=y$ are coordinates in N_{J} induced from $K^{\mathbf{n}}, y^{j}=$ $y^{j}\left(x^{1}, \ldots, x^{\alpha}\right)=h^{j}\left(x^{1}, \ldots, x^{\alpha}\right), x^{j}$ and $y^{j} \in \mathbf{K}$.

Let now $\operatorname{dim}_{\mathbf{K}} M=\operatorname{dim}_{\mathbf{K}} N=\aleph_{0}$. Let λ be equivalent with a probability $\mathbf{Q}_{\mathbf{q}}$-valued measure either on the entire $T_{y} N$ or on its Banach infinitedimensional over K subspace P (see Formulas I.3.6.(13-20)). Each such λ
induces a family of probability measures ν on $B f(N)$ or its cylinder subalgebra induced by the projection of $T_{y} N$ onto P, which may differ by their supports.

Let $T_{y} N=$: L be an infinite-dimensional separable Banach space over K, so there exists a topological vector space $L^{\mathbf{N}}:=\prod_{j=1}^{\infty} L_{j}$, where $L_{j}=L$ for each $j \in \mathbf{N}$ [15]. Consider a subspace Λ^{∞} of a space of continuous ∞-multilinear functionals $\eta: L^{\mathbf{N}} \rightarrow \mathbf{K}$ such that

$$
\eta(x+y)=\eta(x)+\eta(y), \eta(\sigma x)=(-1)^{|\sigma|} \eta(x) \text { and } \eta(x)=\lambda \eta(z)
$$

for each $x, y \in L^{\mathbf{N}}, \sigma \in S_{\infty}$ and $\lambda \in K$, where

$$
x=\left\{x^{j}: x^{j} \in \mathrm{~L}, j \in \mathbf{N}\right\} \in \mathrm{L}^{\mathbf{N}}, z^{j}=x^{j} \text { for each } j \neq k_{0} \text { and } \lambda z^{k_{0}}=x^{k_{0}}
$$

S_{∞} is a group of all bijections $\sigma: \mathbf{N} \rightarrow \mathbf{N}$ such that $\operatorname{card}\{j: \sigma(j) \neq j\}<\aleph_{0}$, $|\sigma|=1$ for $\sigma=\sigma_{1} \ldots \sigma_{n}$ with odd $n \in \mathbf{N}$ and pairwise transpositions $\sigma_{l} \neq I$, that is,

$$
\sigma_{l}\left(j_{1}\right)=j_{2}, \sigma_{l}\left(j_{2}\right)=j_{1} \text { and }\left.\sigma_{l}\right|_{N \backslash\left\{j_{1}, j_{2}\right\}}=I
$$

for the corresponding $j_{1} \neq j_{2},|\sigma|=2$ for even n or $\sigma=I$. Then Λ^{∞} (or Λ^{j}) induces a vector bundle $\Lambda^{\infty} N$ (or $\Lambda^{j} N$) on a manifold N of ∞-multilinear skew-symmetric mappings over $F(N)$ of $\Psi(N)^{\infty}$ (or $\Psi(N)^{j}$ respectively) into $\mathcal{F}(N)$, where $\Psi(N)$ is a set of differentiable vector fields on N and $F(N)$ is an algebra of K-valued C^{1}-functions on N. This $\Lambda^{\infty} N$ is the vector bundle of differential ∞-forms on N. Then there exist a subfamily $\Lambda_{G}^{\infty} N$ of differential forms w on N induced by the family $\{\nu\}$.

Let $\Lambda^{j} N$ be the space of differential j-forms w on N such that $w=$ $\sum_{|J|=j} w_{J} d x^{J}$, where $d x^{J}=d x^{j_{1}} \wedge \ldots \wedge d x^{j_{n}}$ for a multi-index $J=\left(j_{1}, \ldots, j_{n}\right)$, $n \in \mathbf{N},|J|=j_{1}+. .+j_{n}, 0 \leq j_{i} \in \mathbf{Z}, w_{J}: N \rightarrow \mathbf{K}$ are $C^{\infty 0}$-mappings, $B^{k} N:=\oplus_{j=0}^{k} \Lambda^{j} N$. Here the manifold $B^{k} N$ is considered to be of classes of smoothness C^{∞}.

Let $\bar{B}^{\infty} N:=\left(\oplus_{0 \leq j \in Z} \Lambda^{j} N\right) \oplus \Lambda_{G}^{\infty} N$ for $\operatorname{dim}_{\mathrm{K}} N=\infty$ and $\bar{B}^{k} N=$ $\oplus_{j=0}^{k} \Lambda^{j} N$ for each $k \in \bar{N}$. We choose $w \in \bar{B}^{k} N$, where $k=\min \left(\operatorname{dim}_{\mathbf{K}} N, \operatorname{dim}_{\mathbf{K}} M\right)$.
There exists its pull back $\tilde{f}_{\kappa}^{*} w$ for each $f \in C_{0}(\xi, M \rightarrow N)$ (see for comparison the classical case in $\S \S 1.3 .10,1.4 .8$ and 1.4.15 in [11] and the nonArchimedean case in [3]), where

$$
\tilde{f}_{\kappa}:=\sum_{a=1}^{\infty} \kappa_{a}\left\{A_{a}\left(\left.f\right|_{M_{a}}\right)-A_{a-1}\left(\left.f\right|_{M_{a-1}}\right)\right\}
$$

$\left|\kappa_{a}\right| \times\left\|A_{a}\right\| \leq 1$ and $\kappa_{a} \in K$ for each $a \in \mathbf{N}, A_{0}:=0$ (see Formula I.3.6.(1)). This series is correctly defined and converges due to Lemma I.2.4.2 and Formulas I.2.4.3.b.(1-4). When $f \neq 0$ there exists $\kappa:=\left\{\kappa_{a}: a \in \mathbf{N}\right\}$ such that $\tilde{f}_{\kappa} \neq 0$. Let $E_{j}: S_{j} \rightarrow P$ be a family of continuous linear operators from Banach spaces S_{j} into a Banach space P, then there exists a continuous linear operator

$$
\begin{gathered}
E: c_{0}\left(\left\{S_{j}: j \in N\right\}\right) \rightarrow P \text { such that } \\
E x=\sum_{j=1}^{\infty} E_{j} x^{j},
\end{gathered}
$$

where $x=\left\{x^{j}: x^{j} \in S_{j}, j \in \mathbf{N}\right\} \in c_{0}\left(\left\{S_{j}: j \in N\right\}\right)$. We take $w \in$ $C_{0}\left(\infty, \tilde{M} \rightarrow B^{k} N\right)$, when $\operatorname{dim}_{K} M \leq \operatorname{dim}_{K} N$. When $\aleph_{0}>\operatorname{dim}_{K} M>$ $\operatorname{dim}_{\mathrm{K}} N$ we take $w \in C_{0}\left(\infty, \tilde{M} \rightarrow B^{k}\left(N^{m}\right)\right.$), where $N^{m}=N_{1} \times \ldots \times N_{m}$ with $N_{j}=N$ for each $j=1, \ldots, m$ such that $\mathbf{N} \ni m \geq \operatorname{dim}_{\mathbf{K}} M / \operatorname{dim}_{K} N$. A mapping $F \in C_{0}(t, \tilde{M} \rightarrow N)$ generates a mapping $F^{\otimes m}:=(F, \ldots, F): \tilde{M} \rightarrow$ N^{m} and the pull back ($\left.F^{\otimes m}\right)^{*}$ which is also denoted simply by F^{*}, where $F^{*} w$ is a $C_{0}(t-1)$-mapping, when $1 \leq t \in \mathbf{R},(F, \ldots, F)$ is an m-tuplet. When $\aleph_{0}=\operatorname{dim}_{\mathbf{K}} M>\operatorname{dim}_{\mathbf{K}} N$ we take instead of N or N^{m} a submanifold \tilde{N} of $N^{\infty}:=\bigotimes_{j=1}^{\infty} N_{j}$ modelled on $c_{0}\left(\left\{S_{j}: j \in \underset{\sim}{N}\right\}\right)$, where $S_{j}=T_{y} N$ for each j, that is, in accordance with our notation $\tilde{N}:=c_{0}\left(N_{j}: j \in \tilde{N}\right)$. Therefore, there exists a pull back $\tilde{f}^{*} w$ for ν and w either on N^{s} or on \tilde{N} instead of N in the corresponding cases of $\operatorname{dim}_{\mathrm{K}} M$ and $\operatorname{dim}_{\mathrm{K}} N$

Moreover, to $\left(\pi_{J} \tilde{f}_{\kappa}\right)^{*} w$ a $\mathbf{Q}_{\mathbf{q}}$-valued measure μ_{w} on \tilde{M} corresponds, since ν is the $\mathbf{Q}_{\mathbf{q}}$-valued measure. When $\operatorname{dim}_{\mathbf{K}} M<\aleph_{0}$ we take \tilde{f} instead of \tilde{f}_{κ}. Then there exists a $\mathbf{Q}_{\mathbf{q}}$-valued functional:

$$
\text { (5) } F_{J, w, \kappa}(f):=\int_{\bar{M}}\left(\pi_{J} \bar{f}_{\kappa}\right)^{*} w=\int_{\bar{M}}\left(\pi_{J} \tilde{f}_{\kappa} \circ \psi\right)^{*} w
$$

for each $f \in C_{0}^{0}\left(\xi,\left(\tilde{M}, s_{0}\right) \rightarrow\left(\bar{N}, y_{0}\right)\right)$ and $\psi \in G_{0}(\xi, \overline{\tilde{M}})$, consequently, $F_{J, w, \kappa}$ is continuous and constant on each class $\langle f\rangle_{K, \xi}$, where either $\tilde{N}=N$ or $\bar{N}=N^{m}$ or $\bar{N}=\tilde{N}$ in the corresponding cases. If h is not locally constant then h^{*} is not zero operator, hence the family $\left\{F_{J, w, \kappa}: J, w, \kappa\right\}$ separates points in the loop semigroup, where κ is omitted in the case $\operatorname{dim}_{\mathbf{K}} M<\aleph_{0}$.

Let $\tilde{\Xi}_{y}: \mathbf{Q}_{\mathbf{q}} \rightarrow S^{1}$ be a continuous character of $\mathbf{Q}_{\mathbf{q}}$ as the additive group (see §25.1[10]), where $S^{1}:=\{z \in C:|z|=1\}$ is the unit circle, x and
$y \in \mathbf{Q}_{\mathbf{q}}$,

$$
\text { (6) } \tilde{\Xi}_{y}(x)=\exp \left[2 \pi i\left(\sum_{n=-\infty}^{\infty}\left(\sum_{s=n}^{\infty} y_{-s} q^{(n-s-1)}\right)\right)\right] \text {, }
$$

$x=\sum_{n=-\infty}^{\infty} x_{n} q^{n}, x_{n} \in\{0,1, \ldots, q-1\}$. For a given x and y this sum in [*] is finite, where y is fixed. In view of Formulas (1-6)

$$
\Xi(g):=\tilde{\Xi}\left(\binom{+}{-} F_{J, w, \kappa}(f)\right)
$$

is a continuous character on $L_{\xi}(M, N)=L_{\xi}(\tilde{M}, N)$, where $F_{J, w, \kappa}(f)$ [or $-F_{J, w, \kappa}(f)$] corresponds to g [or $-g$ respectively], for g being the image of $\langle f\rangle_{K, \xi}$ relative to the embedding

$$
\gamma: \Omega_{\xi}(\tilde{M}, N) \hookrightarrow L_{\xi}(\tilde{M}, N)
$$

(see also §2.2).
3.4. Note. The loop groups and semigroups were considered above for analytic manifolds with disjoint clopen charts. Each metrizable manifold M on a Banach space X over a local field K is a disjoint union of clopen subsets diffeomorphic with balls in X, since the value group $\Gamma_{K}:=\left\{|x|_{\mathrm{K}}: 0 \neq x \in\right.$ $\mathbf{K}\}$ is discrete in $(0, \infty)$ (see [14] and Lemma 7.3.6 [6]).

Suppose now that a new atlas $A t^{\prime}(M)$ is with open charts $\left(U_{j}^{\prime}, \phi_{j}^{\prime}\right)$ such that there are $U_{j} \cap U_{i}^{\prime} \neq \emptyset$ for some $i \neq j$. Using spaces $C_{0}\left(\xi, \phi_{j}^{\prime}\left(U_{j}^{\prime}\right) \rightarrow Y\right)$ we can define $C_{0}(\xi, M \rightarrow N)$ correctly only if connecting mappings $\phi_{i} \circ \phi_{j}^{\prime-1}$ on $\phi_{j}^{\prime}\left(U_{j}^{\prime} \cap U_{i}^{\prime}\right)$ are of class of smoothness not less than $C_{0}(\xi)$ for each $i \neq j$ with $U_{j}^{\prime} \cap U_{i}^{\prime} \neq 0$. Here the atlases $A t^{\prime}(M)$ and $A t^{\prime}(N)$ need not be disjoint. The same condition need to be imposed on $\psi_{i}^{\prime} \circ \psi_{j}^{\prime-1}$ for each $V_{j}^{\prime} \cap V_{i}^{\prime} \neq \emptyset$ for a new atlas $A t^{\prime}(N)$ of N with open charts ($V_{j}^{\prime}, \psi_{j}^{\prime}$). This is also necessary for the definition of $G(\xi, M)$. Let $\phi: M \rightarrow M^{\prime}$ be a diffeomorphism for $1 \leq \xi=t$ or $\xi=(t, s)$ with $0 \leq t$ and $1 \leq s$ (a homeomorphism for $0 \leq \xi=t<1$) of class not less than $C_{0}(\xi)$ of two manifolds (may be one set with two different atlases), then $G(\xi, M)$ and $G\left(\xi, M^{\prime}\right)$ are diffeomorphic (or homeomorphic) topological groups with the diffeomorphism (the homeomorphism respectively)

$$
g \mapsto \phi \circ g \circ \phi^{-1},
$$

since $G(\xi, M)$ have a Banach manifold structure for $1 \leq t$ or $1 \leq s$, where $g \in G(\xi, M)$. If $\psi: N \rightarrow N^{\prime}$ is a diffeomorphism (homeomorphism) of class
at least $C_{0}(\xi)$, then $C_{0}(\xi, M \rightarrow N)$ and $C_{0}\left(\xi, M^{\prime} \rightarrow N^{\prime}\right)$ are diffeomorphic (homeomorphic) due to the following map

$$
g \mapsto \psi \circ g \circ \phi^{-1}
$$

where $g \in C_{0}(\xi, M \rightarrow N)$. If $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ are sequences in $C_{0}\left(\xi,\left(M, s_{0}\right) \rightarrow\right.$ (N, y_{0})) converging to f and g respectively, $\left\{\eta_{n}\right\}$ is a sequence in $G_{0}(\xi, M)$ such that $g_{n}=f_{n} \circ \eta_{n}$ for each $n \in \mathbf{N}$, then

$$
\psi \circ f_{n} \circ \phi^{-1} \circ \phi \circ \eta_{n} \circ \phi^{-1}=\psi \circ g_{n} \circ \phi^{-1}
$$

This gives a bijective correspondence between classes $\langle g\rangle_{K, t}$ and $\langle\tilde{g}\rangle_{K, t}$ in $C_{0}\left(\xi,\left(M, s_{0}\right) \rightarrow\left(N, y_{0}\right)\right)$ and $C_{0}\left(\xi,\left(M^{\prime}, s_{0}^{\prime}\right) \rightarrow\left(N^{\prime}, y_{0}^{\prime}\right)\right)$ respectively, where

$$
\tilde{g}=\psi \circ g \circ \phi^{-1} \in C_{0}\left(\xi,\left(M^{\prime}, s_{0}^{\prime}\right) \rightarrow\left(N^{\prime}, y_{0}^{\prime}\right)\right)
$$

$s_{0}^{\prime}=\phi\left(s_{0}\right), y_{0}^{\prime}=\psi\left(y_{0}\right)$. Therefore, $\Omega_{\xi}(M, N)$ and $\Omega_{\xi}\left(M^{\prime}, N^{\prime}\right)$ are diffeomorphic (homeomorphic respectively) topological semigroups, consequently, $L_{\xi}(M, N)$ and $L_{\xi}\left(M^{\prime}, N^{\prime}\right)$ are diffeomorphic (homeomorphic) topological groups due to Theorems I.2.7, I.2.10, 2.3 and Proposition 2.2. This means independence of these semigroups and groups relative to a choice of equivalent atlases of manifolds.

4 Path groups.

4.1. Definition and Note. In view of Equations I.2.9.(1-3) each space N^{ξ} has the additive group structure, when $N=B(Y, 0, R), 0<R \leq \infty$.

Therefore, the factorization by the equivalence relation $K_{\xi} \times$ id produce the monoid of paths $C_{0}^{\theta}(\xi, \bar{M} \rightarrow N) /\left(K_{\xi} \times i d\right)=: \mathrm{S}_{\xi}(M, N)$ in which compositions are defined not for all elements, where $y_{1} i d y_{2}$ if and only if $y_{1}=y_{2} \in N$. There exists a composition $f_{1} f_{2}=\left(g_{1} g_{2}, y\right)$ if and only if $y_{1}=y_{2}=y$, where $f_{i}=\left(g_{i}, y_{i}\right), g_{i} \in \Omega_{\xi}(M, N)$ and $y_{i} \in N^{\xi}, i \in\{1,2\}$. The latter semigroup has elements e_{y} such that $f=e_{y} \circ f=f \circ e_{y}$ for each f, when their composition is defined, where $y \in N^{\xi}, f=(g, y), g \in \Omega_{\xi}(M, N), e_{y}=(e, y)$. If N^{ξ} is a monoid, then $\mathrm{S}_{\xi}(M, N)$ can be supplied with the structure of a direct product of two monoids. Therefore, $P_{\xi}(M, N):=L_{\xi}(M, N) \times N^{\xi}$ is called the path group.
4.2. Theorem. On the monoid $G=\mathrm{S}_{\xi}(M, N)$ from §4.1, when $N=$ $B(Y, 0, R)$ and N^{ξ} is supplied with the additive group structure, and each $b \in \mathbf{C}$ there are probability quasi-invariant and pseudo-differentiable of order b measures μ with values in \mathbf{R} and $\mathbf{Q}_{\mathbf{q}}$ for each prime number $q \neq p$ relative to a dense submonoid G^{\prime}.

Proof. In view of Formulas 2.9.(1-3) there is the following isomorphism $\mathrm{S}_{\xi}(M, N)=\Omega_{\xi}(M, N) \times N^{\xi}$. Hence it is sufficient to construct $\mu=\mu_{1} \times \mu_{2}$, where μ_{2} is a quasi-invariant and pseudo-differentiable measure on N^{ξ} and μ_{1} on $\Omega_{\xi}(M, N)$, since μ_{1} was constructed in Theorem I.3.6. The desired measure μ_{2} on N^{ξ} exists due to Theorems 3.23, 3.27 and 4.3 [13].
4.3. Theorem. On the path group $G=P_{\xi}(M, N)$ from §4.1, when $N=B(Y, 0, R)$ and N^{ξ} is supplied with the additive group structure, and each $b \in \mathbf{C}$ there are probability quasi-invariant and pseudo-differentiable of order b measures μ with values in \mathbf{R} and $\mathbf{Q}_{\mathbf{q}}$ for each prime number $q \neq p$ relative to a dense subgroup $G^{\prime \prime}$.

Proof. Since $P_{\xi}(M, N)=L_{\xi}(M, N) \times N^{\xi}$, it is sufficient to construct $\mu=\mu_{1} \times \mu_{2}$, where μ_{2} is a quasi-invariant and pseudo-differentiable measure on N^{ξ} and μ_{1} on $L_{\xi}(M, N)$, since μ_{1} was constructed in Theorem 2.5 and μ_{2} in §4.2.
4.4. Remark. Loop and path groups can be defined also for manifolds modelled on locally K-convex spaces.

In general for locally K -convex spaces X and Y a mapping $F: U \rightarrow Y$ is called of class $C(t)$ if the partial difference quotient $\Phi^{\nu} F$ has a bounded continuious extension $\bar{\Phi}^{v} F: U \times V^{v} \times S^{v} \rightarrow Y_{A_{p}}$ for each $0 \leq v \leq t$ and each derivative $F^{(k)}(x): X^{k} \rightarrow Y$ is a continuous k-linear operator for each $x \in U$ and $0<k \leq[t]$, where U and V are open neighbourhoods of 0 in X, $U+V \subset U, k \in \overline{\mathbf{N}}_{\mathbf{o}}, Y_{\Lambda_{\mathbf{p}}}$ is a locally $\Lambda_{\mathbf{p}}$-convex space obtained from Y by extension of a scalar field from K to $\mathbf{\Lambda}_{\mathbf{p}}, s=[v]+\operatorname{sign}\{v\}$. If F is of class $C(n)$ for each $n \in \mathbf{N}$ then it is called of class $C(\infty)$.

For $C(m)$-manifolds M and N modelled on locally K-convex spaces X and Y with atlases $A t(M)=\left\{\left(U_{i}, \phi_{i}\right): i \in \Lambda_{M}\right\}$ and $A t(N)=\left\{\left(V_{i}, \psi_{i}\right): i \in\right.$ $\left.\Lambda_{N}\right\}$ a mapping $F: M \rightarrow N$ is called of class $C(n)$ if $F_{i, j}$ are of class $C(n)$ for each i and j, where $F_{i, j}=\psi_{i} \circ F \circ \phi_{j}^{-1}, \phi_{i} \circ \phi_{j}^{-1}$ and $\psi_{i} \circ \psi_{j}^{-1}$ are of class $C(m), \infty \geq m \geq n \geq 0$.

Then quite analogously to §I.2.6 and §2.1 loop and path semigroups and groups can be defined. For the construction of quasi-invariant measures in addition there can be used closed subspaces S of separable type over
\mathbf{K} in dual spaces to nuclear locally K-convex spaces. From such spaces S quasi-invariant measures can be induced on containing them locally Kconvex spaces Z with the help of the standard procedure based on algebras of cylindrical subsets with the subsequent extension onto the Borel σ-field. Then measures on groups can be constructed analogously to the considered above cases. If a group G is non-separable, then a non-zero Borel measure μ may be quasi-invariant relative to a subgroup G^{\prime} which is not dense in G. Nevertheless, with the help of μ a regular representation of G^{\prime} associated with μ can be induced.

5 Quasi-invariant measures on O-groups.

6.1. Definition. The space $C_{0}^{0}\left(\xi,\left(M, s_{0}\right) \rightarrow\left(N, y_{0}\right)\right)$ is not a semigroup itself, but compositions are defined for the families $<f>_{K, \xi}$, that is, relative to the equivalence relation K_{ξ}. Henceforth, let the topology of $\Omega_{\xi}(M, N)$ be defined relative to countable $A t(M)$ as in $\S 1.2 .5$ and $\S 1.2 .6$. If F is the free Abelian group corresponding to $\Omega_{\xi}(M, N)$ from $\S 2.1$, then there exists a set \bar{W} generated by formal finite linear combinations over \mathbf{Z} of elements from $C_{0}^{0}\left(\xi,\left(M, s_{0}\right) \rightarrow\left(N, y_{0}\right)\right)$ and a continuous extension \bar{K}_{ξ} of K_{ξ} onto $W_{\xi}(M, N)$ and a subset \bar{B} of \bar{W} generated by elements $[f+g]-[f]-[g]$ such that $W_{\xi}(M, N) / \bar{K}_{\xi}$ is isomorphic with $L_{\xi}(M, N)$, where

$$
W_{\xi}(M, N):=\bar{W} / \bar{B}
$$

f and $g \in C_{0}^{0}\left(\xi,\left(M, s_{0}\right) \rightarrow\left(N, y_{0}\right)\right),[f]$ is an element in \bar{W} corresponding to f, \bar{W} is in a topology inherited from the space $C_{0}^{0}\left(\xi,\left(M, s_{0}\right) \rightarrow\left(N, y_{0}\right)\right)^{\mathbf{Z}}$ in the Tychonoff product topology. We call $W_{\xi}(M, N)$ an O-group. Clearly the composition in $C_{0}^{0}\left(\xi,\left(M, s_{0}\right) \rightarrow\left(N, y_{0}\right)\right)$ induces the composition in $W_{\xi}(M, N)$. Then $W_{\xi}(M, N)$ is not the algebraic group, but associative compositions are defined for its elements due to the homomorphism χ^{*} given by Formulas 2.6.2.(5,6), hence $W_{\xi}(M, N)$ is the monoid without the unit element.

Let $\mu_{h}(A):=\mu(h \circ A)$ for each $A \in B f\left(W_{\xi}(M, N)\right)$ and $h \in W_{\xi}(M, N)$, then as in §§I.3.3 and I.3.4 we get the definition of quasi-invariant and pseudodifferentiable measures.

Let now $G^{\prime}:=W_{\xi}^{\{k\}}(M, N)$ be generated by $C_{0,\{k\}}^{0}\left(\xi,\left(M, s_{0}\right) \rightarrow(N, 0)\right)$ as in §I.3.5, then it is the dense O-subgroup in $W_{\xi}(M, N)$, where $c>0$ and
$c^{\prime}>0$.
5.2. Theorem. Let $G:=W_{\xi}(M, N)$ be the O-group as in $\S 5.1$ and $A t(M)$ be finite. Then there exist quasi-invariant and pseudo-differentiable measures μ on G with values in $[0, \infty)$ and in $\mathbf{Q}_{\mathbf{q}}$ (for each prime number q such that $q \neq p$) relative to a dense O-subgroup G^{\prime}.

Proof. In view of the definition of the space $C_{0}^{0}(\xi, M \rightarrow Y)$ the mapping \tilde{A} given by Formula 1.3.6.(3) for $A t(M)$ instead of $A t^{\prime}(M)$ is the isomorphism of $T_{0} C_{0}^{0}\left(\xi,\left(M, s_{0}\right) \rightarrow(N, 0)\right)$ onto the Banach subspace of $\tilde{\boldsymbol{Z}}$ for $\xi=(t, s)$, since $\operatorname{At}(M)$ is finite and $\phi_{j}\left(U_{j}\right)$ are bounded in X (see §I.2.4.1). In view of the existence of the mapping $w_{\text {zap }}(V)$ given by Formulas I.2.8.(3,4) there exists the local diffeomorphism $\Upsilon: W_{e} \rightarrow V_{0}^{\prime}$ induced by \tilde{A} and \bar{K}_{ξ}, where W_{e} is a neighbourhood of 0 in $W_{\xi}(M, N), V_{0}^{\prime}$ is a neighbourhood of zero either in the Banach subspace \tilde{H} of $T_{0} W_{\xi^{\prime}}(M, Y)$ for $\operatorname{dim}_{K} M<\infty$ or in the Banach subspace \tilde{H} of $c_{0}\left(\left\{T_{0} W_{\xi^{\prime}}\left(M_{a}, Y\right): a \in \mathbf{N}\right\}\right)$ for $\operatorname{dim}_{K} M=\aleph_{0}$.

Let now W_{e}^{\prime} be a neighbourhood of 0 in G^{\prime} such that $W_{e}^{\prime} W_{e}=W_{e}$. It is possible, since the topology in G and G^{4} is given by the corresponding ultrametrics and there exists W_{e} with $W_{e} W_{e}=W_{e}$, hence it is sufficient to take $W_{e}^{\prime} \subset W_{e}$. For $g \in W_{e}, v=w_{\text {eap }}^{-1}(g), \phi \in W_{e}^{\prime}$ the following operator $S_{\phi}(v):=\Upsilon \circ L_{\phi} \circ \Upsilon^{-1}(v)-v$ is defined for each $(\phi, v) \in W_{e}^{\prime} \times V_{0}^{\prime}$, where $L_{\phi}(g):=\phi \circ g$. Then $S_{\phi}(v) \in V^{\prime \prime} \subset V_{0}^{\prime}$, where $V^{\prime \prime}{ }_{0}$ is an open neighbourhood of the zero section either in the Banach subspace \tilde{H}^{\prime} of $T_{e} G^{\prime}$ for $\operatorname{dim}_{\mathbf{K}} M<\infty$ or in the Banach subspace \tilde{H}^{\prime} of $c_{0}\left(\left\{T_{e} G_{a}^{\prime}: a \in N\right\}\right)$ for $\operatorname{dim}_{\mathbf{K}} M=\aleph_{0}$, where $G_{a}^{\prime}=W_{\xi}^{\{h\}}\left(M_{a}, N\right)$. Moreover, $S_{\phi}(v)$ is the $C(\infty)$-mapping by ϕ and v. The rest of the proof is quite analogous to that of Theorem I.3.6.
5.3. Note. O-groups can be defined in another topology with the help of $c_{0}\left(\left\{H_{j}: j \in \mathrm{~N}\right\}\right)$, where $H_{j}:=C_{0}\left(\xi ; U_{j} \rightarrow Y\right)$. Then on such O-groups quasi-invariant and pseudo-differentiable measures can be constructed quite analogously.

6 Notation.

K is a local field; $\mathbf{N}:=\{1,2,3, \ldots\} ; \mathbf{N}_{\mathbf{o}}:=\{0,1,2, \ldots\}$;
$B(X, x, r)$ and $B\left(X, x, r^{-}\right)$are balls §I.2.2;
\bar{Q}_{m} are polynomials §I.2.2;
$X=c_{0}(\alpha, K), Y=c_{0}(\beta, K),\left\{e_{i}: i \in \alpha\right\}$ and $\left\{q_{i}: i \in \beta\right\}$ are orthonormal bases in Banach spaces X and $Y ; M$ and N are manifolds on X and Y
respectively \S I.2.4;
$A t(M)=\left\{\left(U_{j}, \phi_{j}\right): j \in \Lambda_{M}\right\}$ and $A T(N)=\left\{\left(V_{k}, \psi_{k}\right): k \in \Lambda_{N}\right\}$ are atlases §І.2.4;
$C(t, M \rightarrow Y)$ and $C_{0}(t, M \rightarrow Y)$ are spaces, $\|f\|_{C(t, M \rightarrow Y)}=\|f\|_{t}$ and $\|f\|_{C_{0}(t, M \rightarrow Y)}$ are norms §1.2.4;
$\rho^{\xi}(f, g)$ and $\rho_{0}^{\xi}(f, g)$ are ultrametrics in $C^{\theta}(\xi, M \rightarrow N)$ and $C_{0}^{\theta}(\xi, M \rightarrow$ $N)$ respectively, $\xi=t$ or $\xi=(t, s)$, for $s>0$ the manifold M is locally compact, for $s=0$ the manifold M may be non-locally compact §I.2.4.3;
$\operatorname{Hom}(M)$ is a homeomorphism group §I.2.4.4;
$G(\xi, M)$ and $\operatorname{Diff}(\xi, M)$ are diffeomorphism groups \S I.2.4.4;
$M=\bar{M} \backslash\{0\}, \bar{M} \hookrightarrow c_{0}\left(\omega_{0}, K\right), A t^{\prime}(\bar{M})=\left\{\left(\bar{U}_{j}, \bar{\phi}_{j}^{\prime}\right): j \in \Lambda_{\bar{M}}^{\prime}\right\}, s_{0}=0$ and $y_{0}=0$ are marked points of \bar{M} and N respectively $\S 1.2 .5$;
$\chi: M \vee M \rightarrow M$ is a mapping §I.2.6;
$G_{0}(\xi, M)$ is a subgroup and $C_{0}\left(\xi,\left(M, s_{0}\right) \rightarrow\left(N, y_{0}\right)\right)$ is a subspace preserving marked points, K_{ξ} is an equivalence relation, $\langle f\rangle_{K, \xi}$ is a class of equivalent elements §I.2.6;
$\Omega_{\xi}(M, N)$ is a loop semigroup \S I.2.6;
$P(l, s)$ is an antiderivation §I.2.11;
$B f\left(X^{\prime}\right), A f\left(X^{\prime}, \mu\right)$ and $B \operatorname{co}\left(X^{\prime}\right)$ are algebras of subsets of X^{\prime}, N_{μ} is a function §I.3.1;
$\rho_{\mu}(h, g)$ is a quasi-invariance factor §I.3.3;
$\mathrm{S}_{\boldsymbol{\xi}}(M, N)$ is a path semigroup §II.4.1;
$L_{\xi}(M, N)$ is a loop group §II.2.1;
$P_{\xi}(M, N)$ is a path group §II.4.1;
$W_{\xi}(M, N)$ is an O-group §II.5.1.

References

[1] W. Banaszczyk. "Additive subgroups of topological vector spaces" (Berlin: Springer, 1991).
[2] N. Bourbaki. "Intégration". Livre VI. Fasc. XIII, XXI, XXIX, XXXV. Ch. 1-9 (Paris: Hermann; 1965, 1967, 1963, 1969).
[3] N. Bourbaki. "Variétés différentielles et analytiques". Fasc. XXXIII (Paris: Hermann, 1967).
[4] Yu.L. Dalecky, S.V. Fomin. "Measures and differential equations in infinite-dimensional space" (Dordrecht, The Netherlands: Kluwer, 1991).
[5] N. Dunford, J.T. Schwartz. "Linear operators" (New York: Interscience Publ., V. 1, 1958; V. 2, 1963).
[6] R. Engelking. "General topology". Second Edit., Sigma Ser. in Pure Math. V. 6 (Berlin: Heldermann Verlag, 1989).
[7] H. Federer. "Geometric measure theory" (Berlin: Springer, 1968).
[8] J.M.G. Fell, R.S. Doran. "Representations of *-algebras, locally compact groups, and Banach *-algebraic bundles". V. 1 and V. 2 (Boston.: Acad. Press, 1988).
[9] I.M. Gel'fand, N.Ja. Vilenkin. "Generalized functions. V. 4. Applications of harmonic analysis" (New York: Academic Press, 1964).
[10] E. Hewitt, K.A. Ross. "Abstract harmonic analysis" (Berlin: Springer, 1979).
[11] W. Klingenberg. "Riemannian geometry" (Berlin: Walter de Gruyter, 1982).
[12] S. Lang. "Algebra" (New York: Addison-Wesley Pub. Com, 1965).
[13] S.V. Ludkovsky. "Quasi-invariant and pseudo-differentiable measures on a non-Archimedean Banach space". Int. Cent. Theor. Phys., Trieste, Italy, Preprint № IC/96/210, 1996.
[14] S.V. Ludkovsky. "Embeddings of non-Archimedean Banach manifolds into non-Archimedean Banach spaces". Russ. Math. Surv. 53 (1998), 1097-1098.
[15] L. Narici, E. Beckenstein. "Topological vector spaces" (New York: Marcel Dekker Inc., 1985).
[16] A.C.M. van Rooij. "Non-Archimedean functional analysis" (New York: Marcel Dekker Inc., 1978).
[17] R.C. Swan. "The Grothendieck ring of a finite group". Topology. 2 (1963), 85-110.
[18] R.M. Switzer. "Algebraic topology - homotopy and homology" (Berlin: Springer, 1975).

[^0]: *Mathematics subject classification (1991 Revision) 43A05, 43A85 and 46S10.

