@article{AMBP_2001__8_2_47_0, author = {Blach\`ere, S\'ebastien}, title = {Harmonic functions on annuli of graphs}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {47--59}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {8}, number = {2}, year = {2001}, mrnumber = {1888815}, zbl = {01805811}, language = {en}, url = {http://archive.numdam.org/item/AMBP_2001__8_2_47_0/} }
TY - JOUR AU - Blachère, Sébastien TI - Harmonic functions on annuli of graphs JO - Annales mathématiques Blaise Pascal PY - 2001 SP - 47 EP - 59 VL - 8 IS - 2 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - http://archive.numdam.org/item/AMBP_2001__8_2_47_0/ LA - en ID - AMBP_2001__8_2_47_0 ER -
%0 Journal Article %A Blachère, Sébastien %T Harmonic functions on annuli of graphs %J Annales mathématiques Blaise Pascal %D 2001 %P 47-59 %V 8 %N 2 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U http://archive.numdam.org/item/AMBP_2001__8_2_47_0/ %G en %F AMBP_2001__8_2_47_0
Blachère, Sébastien. Harmonic functions on annuli of graphs. Annales mathématiques Blaise Pascal, Tome 8 (2001) no. 2, pp. 47-59. http://archive.numdam.org/item/AMBP_2001__8_2_47_0/
[1] Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), no. 2, 293-314. | MR | Zbl
and ,[2] Inégalité de Harnack elliptique sur les graphes, Colloquium Mathematicum 80 (1997), no. 1, 19-37. | MR | Zbl
,[3] Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana 15 (1999), no. 1, 181-232. | MR | Zbl
,[4] Comparison theorems for reversible Markov chains, Ann. Appl. Probab. 3 (1993), no. 3, 696-730. | MR | Zbl
and ,[5] Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. | MR | Zbl
and ,[6] On Harnack's theorem for elliptic differential equations, Comm. Pure and Applied Math. 14 (1961), 577-591. | MR | Zbl
,[7] Isoperimetric inequalities and decay of iterated kernels for almost-transitive Markov chains, Combin. Probab. Comput. 4 (1995), 419-442. | MR | Zbl
,