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Abstract

, 
The standard oceanic Rossby wave modes are separable solutions

of the primitive equations linearized around a resting, flat-bottom
ocean whose stratification depends upon depth only. These waves
have a modal structure in the vertical and a propagating horizon-
tal part that satisfies the shallow water equations with an equivalent
depth He that is different for each mode. These waves propagate
independently of each other over a flat-bottom, but become every-
where coupled over topography. This coupling can be primarily inter-
preted as defining new dynamical wave modes, i.e. generalized topo-
graphic Rossby waves, which can be constructed explicitly by means
of WKB theory under the usual scale separation assumption. WKB
solutions may locally breakdown, however, when the wavenumbers
and frequency of the mode considered approximately satisfy locally
the dispersion relation of another wave mode supported by the sys-
tem. In such a region, called a mode conversion point, the WKB
solution becomes degenerate and can no longer be expressed in terms
of a single wave mode. There, linear resonance occurs and energy can
be exchanged between two different rays. This paper presents an ap-
plication of mode conversion theory for Rossby waves in a two-layer
ocean propagating over a mid-ocean Gaussian ridge varying with lon-
gitude only. This theory is shown to predict satisfactorily the location
of mode conversion points, and the amount of energy exchanged be-
tween rays. In such a framework, wave creation thus occurs at points
where WKB breaks down.

1The author is supported by a grant of the european community as part of the
EUROCS project
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1 Introduction.

There is strong observational evidence, e.g., [3], that mid-ocean ridges play
a major role in creatinglamplifying incident long baroclinic Rossby waves.
Numerical ocean models have helped to provide evidence that new waves
can be created over topographic ridges, e.g., [1], [15]. So far, however, a
satisfactory theoretical description has been lacking. Perhaps the main at-
tempt at interpretation has been the invocation to the concept of JEBAR
(Joint Effect of Baroclinicity and Relief), e.g., [12]. Simply put, the JEBAR
interpretation consists merely in stating that the standard barotropic and
baroclinic modes, i.e., the modes defined for a flat-bottom reference ocean,
are coupled over topography. Such a description, however, is not satisfac-

tory because it is somehow largely tautological. Furthermore, stating that
the standard modes are coupled does not imply wave creation. In fact, as
explained in [15], the nature of this coupling can be twofold: a) it may result
in new dynamical modes, which on may regard as generalized topographic
Rossby wave modes; b) the new dynamical modes thus defined may them-
selves be coupled. The drawback of the JEBAR interpretation is that it does
not distinguish between these two effects. To make progress, we therefore
need a way to a) construct the generalized dynamical Rossby wave modes
over topography; b) determine whether these modes are coupled or not.

When the medium variations are weakly non-uniform, the first issue can
be addressed by means of WKB theory. Such an approach was pioneered in
the present context by [11] for a constant buoyancy frequency and a topogra-
phy varying in latitude only, and later generalized to more general topography
and stratification by [2] and [13]. The latter studies focused essentially on
how topography locally modifies the structure of the vertical normal modes.
Examples of ray calculations were given only recently, e.g., [6], [9], and [14].
As long as. it is valid, WKB theory provides a description of the system in
terms of dynamically uncoupled wave modes. Direct numerical simulation,
however, suggests that the generalized dynamical modes, regardless of the
way they are defined, cannot remain uncoupled everywhere over topography.
In the experiments realized by [15] for instance, two different wave modes are
clearly observed in the western flat part of an ocean basin with a ridge at its
center, starting with one type of mode in the eastern flat part, clearly indicat-
ing that wave creation occured over the central ridge. Within the framework
of WKB theory, wave creation can only occur in regions where the WKB ap-
proximation breaks down because by construction a ray conserves its energy
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as long as WKB remains valid. To understand this issue, [6] investigated
the validity of WKB theory in layered models of the ocean by comparing ray
calculations with direct numerical simulations using a primitive equations
model. He concluded that WKB theory was valid almost everywhere, except
in localized area where bottom and surface intensified Rossby waves were
found to exchange energy. [6] showed that these regions corresponded to
places where the relation dispersion for the two modes osculated; the author
failed, however, to provide a mathematical description of the phenomenon.
Recently, [17] pointed out that the type of phenomenon described by Hall-
berg had been extensively studied in the context of plasma physics, which
led to a pretty well developed theory called mode conversion theory, e.g., [4],
[7]. This theory was recently applied in a geophysical context to the issue of
the conversion of coastal Kelvin waves to equatorial Yanai waves by [8].

Mode conversion theory provides the mathematical framework to predict
where mode conversion should take place. It also provides connection formula
to link the incident wave action flux Jincident to the outcoming converted
and transmitted action fluxes Jconverted and Jtransmitted through connection
formula

Jtransmitted = T Jincident, Jconverted = ( 1 - T) Jincident (1.1)

where the transmission coefficient T can be linked to the properties of the
dispersion relation. The purpose of this paper is to describe a specific exam-
ple of WKB mode coupling for two-layer long Rossby waves over a Gaussian
ridge, by using linear mode conversion theory. The present discussion re-
mains descriptive, and summarizes the detailed results which the interested
reader may find in [16].

2 Model and notations

The dynamics of coupled Rossby waves over topography is studied with the
same two-layer model as used in [15], whose main features are depicted in
Fig. 1. The model equations are

f z x Vi + Hi~pi = 0, i = 1, 2, (2.2)

~(~1 - ~2) ~t + divU1 = 0, (2.3)
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Figure 1: Model geometry and notation.

~ + divU2 = 0. (2.4)

Eq. (2.2) refer to the linearized momentum equations; it expresses geostrophic
balance in each layer; Eqs (2.3) and (2.4) are linearized mass conservation
equations for each layer. The geometry considered is a rectangular basin
bounded by two meridians at ~ = 0 and ~ = 120°, but unbounded in lati-
tude (= ?). The topography is a Gaussian ridge that varies with longitude
only, whose equation reads

~M-~-~~}.
The notations are: Hi and H2 = ~(~) " ~i represent the unperturbed
layer thicknesses; ~i(~,~,t) and 7~2 (~~) are the surface and interface dis-
placements ; the total layer thicknesses are therefore hi = ~i + ~2 and

h2 = H2 + 7~2; = (/?2 ’" is a dimensionless parameter measuring the
density difference across the interface; Ui = hiui ~ Hiui is the horizontal
transport in layer z = 1,2; f = 203A9sin03B8 is the Coriolis parameter, where
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Figure 2: The root-mean square of the interface displacement as computed by:
direct numerical simulation (left panel); from the wave action ray tube conservation
equation of single mode WKB theory (right panel). Note that the contour lines
represent isolines, not rays!

n is Earth’s rotation rate, R is Earth’s radius, g is Earth’s gravitational
acceleration, and g’ = gE is a reduced gravitational acceleration.

To illustrate the creation of Rossby waves over topography, we consider an
eastern wavemaker experiment where waves are excited at the annual period
along the eastern boundary. The response is therefore purely periodic, so
that the solution of (2.2- 2.4) can be expressed as:

t) _ ~2(03C6, 03B8, t) _ 2(03C6, 03B8)e-i03C9t (2.5)

where 7)1 and 7)2 are therefore complex amplitudes. The result of direct the
numerical simulation for the wave amplitude |2| (03C6, 0) is depicted in the left
panel of Fig. 2. The numerical values used are: Hi = 1000 m, Ho = 4500 m,
J = 1500 m, g’ = 2.10-2 m.s-l, w = 27r/(lyear), = 9.6°. In the eastern

part, the bottom is flat and the wave energy propagate uniformly westward.
Over the ridge, one part of the energy is seen to be deflected southward,
approximately following the potential vorticity contours .H2/ f = cst of the
lower layer, the other part continuing westward, following the contours Hl / f
of the upper layer. Another splitting of the energy appears to occur near the
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top of the ridge, one part of the energy being deflected northward this time,
the other part continuing westward. For comparion, the right panel of Fig.
2) shows the prediction of the classical single mode WKB theory. As said in
the introduction, this calculation assumes the energy to be conserved along a
ray; as a consequence, no energy splitting occurs, with a unique propagation
path that contrasts sharply with that of the real solution. To describe the
features of the real solution, WKB theory must be extended to include mode
conversion points, which is addressed in the following section.

3 Mode conversion theory

Mode conversion points occur typically where two branches of the dispersion
relation osculate. The standard features of mode conversion in one dimension

are depicted in Fig. 3. The propagation is described here in the (k, x) space,
where k is the wavenumber, and x the corresponding spatial coordinate.
The thick lines represent two branches of the dispersion relation k = k(w, x),
where w is the wave frequency which remains constant along a ray if the
medium is time independent. The wavenumber varies with position as a re-
sult of the medium being inhomogeneous. Initially, only the upper branch
is excited (the incident ray), the propagation taking place from right to left.
The lower curve represents the dispersion relation for another wave mode
supported by the system, but which is not excited initially. The two thin
lines represent idealized dispersion curves that represent uncoupled propa-
gation. In the present case, for instance, this idealized propagation would
correspond to propagation taking place entirely in one layer or the other.
The location where mode conversion occurs is associated physically with the
branch crossing of the two uncoupled dispersion curves, and is indicated in
the figure by the circle area. Outside this region, the energy splits between
a converted and transmitted wave.

In the present case, the propagation is two-dimensional, and thus must
be represented in the four-dimensional phase space (k~, ko, 0), where 1~~
and ko are the zonal and meridional wavenumbers respectively. To apply
mode conversion theory, the problem must be reduced to the standard one-
dimensional form. This is achieved by solving the standard canonical ray
equations, e.g., [10]. The idea is to express ko and 03B8 as functions of the longi-
tude ~ and ray index ~, which denotes the starting latitude of the ray along
the eastern boundary. When this is done, all quantities can be expressed in
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Figure 3: Idealized depiction of mode conversion. The two thick lines of equations
1~~ = l~~ (~) and l~~ = k~ (~) represent two branches of the dispersion relation in
the (~, k~) space. Mode conversion occurs in the shaded area where the incident
ray originating from the right separates into a converted and transmitted ray. The
amount of wave action splitting among the two depends on the nature and strength
of the mode coupling. The thin lines represent the dispersion curves ~) = 0
and D22 (1~~, ~) = 0 of the wave modes in the absence of coupling. These curves
intersect at the point (~~, where mode conversion is expected to occur for
the coupled wave modes.
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Figure 4: Evolution of the coupled (thick lines) and uncoupled (thin lines) wave
modes represented in the (1~~, ~~ space, as in the previous figure, corresponding
to a ray originating at ~ = 35°N. The uncoupled rays are the ones intersecting
at two locations near the bottom and top of the ridge eastern flank respectively,
where mode conversion must theoretically take place.
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Figure 5: A pair of rays (denoted by the heavy solid and dashed lines) originating
from the eastern boundary and their successive bifurcations predicted by mode
conversion theory superimposed on the direct numerical computation of the r.m.s.
interface displacement (reproduced from left panel of Fig. 2).
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terms of 1~~, ~ and ~. Fig. 4 shows the evolution of the zonal wavenumber k~
for the present case, for a ray initiated at ~ = 35°. The lower thick curve rep-
resents the zonal evolution of the zonal wavenumber for the initially excited
baroclinic ray. The upper thick curve corresponds to the zonal wavenumber
for the second wave mode. The near coincidence of the thin and thick lines
over the topography indicates the quasi perfect decoupling of the two layers
over the topography, as previously noted by [6]. The thick and thin lines

strongly differ near the mode conversion points, and thus indicate a strong
coupling of the layers there. According to the geometric interpretation of
[5], transmission is expected to be the strongest: a) the closer the dispersion
curves; b) the sharpest the angle between the dispersion curves before and
after the mode conversion point. From Fig. 5, we therefore expect weak
transmission near the bottom ridge, because the two thick lines are quite far
away from each other, while remaining also quite smooth. In contrast, the
thick lines appear very close near the hilltop, while at the same time they
vary abruptly; here, transmission is therefore expected to be the strongest.
This qualitative prediction is confirmed in the next section.

4 Test of mode conversion theory

The first test of mode conversion theory one can make is with regard to its
predictions about where mode conversion should take place. To that end,
we started a new ray each time a mode conversion point was encountered.
As shown in Fig. 4, two such mode conversion points where found here, one
occuring near the bottom of the ridge, the other one near the hilltop, in both
cases on the eastern flank. The result is illustrated in Fig. 5 where we plotted
two rays and their successive bifurcations superimposed on the left panel of
Fig. 2. Wave activity appears clearly to lie within the regions delineated
by the the various rays, which thus indicates that mode conversion theory
correctly predicts the regions where to expect energy.

To illustrate the splitting process, we decomposed the real solution de-
picted in the left panel of Fig. 2 on the two WKB wave modes. Fig. 6

(middle panel) shows the projection on the "baroclinic" WKB mode initially
excited, while the bottom panel shows the projection on the "barotropic"
WKB mode. For comparison, we also depicted the prediction of single WKB
theory accounting for the loss of energy taking successively place at the two
mode conversion points. The latter is therefore directly comparable with the
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Figure 6: (a) Root-means square of the layer interface as computed by single-WKB
mode theory modified to account for the two mode conversion events described in
the text. (b) The root-mean square of the layer interface of the true solution
projected on the WKB normal mode. (c) The root-mean square of the residual of
the true layer interface minus the part depicted in (b). A pair of rays originating
from the eastern boundary and their successive bifurcations predicted by mode
conversion theory were superimposed on the middle and bottom panels.
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part of the wave activity that originates from the eastern boundary, where
the two signals appear to be in good agreement. The bottom panel makes it
clear that generalized "barotropic" waves are created at the bottom and top
of the ridge’s eastern flank. The middle panel also indicates the creation of
a new generalized "baroclinic" wave issued from the barotropic wave created
at the bottom of the ridge.

One can test the theory more quantitatively by comparing the ampli-
tudes of the real solution and that predicted by single mode WKB theory,
accounting or not for mode conversion, for several latitudinal sections taken
at selected longitudes, as shown in Fig. 7. The thin line represents the real

solution, while the thick line represents the prediction of mode conversion
theory accounting for the mode conversion events. The comparison of the
two curves show a very good agreement. The dashed line, on the other hand,
represents the prediction of standard single mode WKB theory, which is seen
to greatly overestimate the amplitude of the wave in the western part of the
basin.

5 Conclusion

The coupling of the standard baroclinic and baroclinic modes can be in-
terpreted most of the time as defining two dynamically independent wave
modes, which can be constructed explicitly using WKB theory when the
medium (here the topography) is weakly non-uniform. Unlike the standard
Rossby wave modes, which are coupled everywhere over topography, the
WKB Rossby wave modes are coupled only in special locations where they
can exchange energy. These points correspond to local resonance induced
by the topography. In the WKB description, energy exchange with another
wave mode can only occur in places where WKB breaks down, as otherwise
energy is conserved along the rays by assumption. Mode conversion theory
describes the resonant energy exchange taking place between rays at points
where two branches of the dispersion relation locally osculate, and where the
WKB approximation breaks down. Such a theory permits to describe and
quantify wave creation in a weakly nonuniform medium. It was shown to be
qualitatively and quantitatively accurate to describe the coupling of Rossby
waves over a Gaussian ridge in a two-layer model. The mechanism thus de-
scribed is universal, and thus is potentially applicable to a wide variety of
waves in geophysical fluids.
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Figure 7: Latitudinal sections of 1i/21 computed by: single WKB mode theory
(dashed line); single WKB mode theory accounting for mode conversion (thick
line); direct numerical simulation projected on WKB normal mode (thin line) for
various longitudes: a) ~ = 5°; b) ~ = 20°; c) ~ = 40°; d) ~ = 65°; e) ~ = 75°;
f ) ~ = 90°. In panels d), e), and f) the three curves are almost indistinguishable
from each other. In panels a), b), and c) the additional peak on the right appears
only in the numerical solution, so that the comparison is to be made only for the
peak on the left.
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