The Affine Frame in p-adic Analysis
Annales mathématiques Blaise Pascal, Volume 10 (2003) no. 2, p. 297-303

In this paper, we will introduce the concept of affine frame in wavelet analysis to the field of p-adic number, hence provide new mathematic tools for application of p-adic analysis.

@article{AMBP_2003__10_2_297_0,
     author = {Cui, Ming Gen and Yao, Huan Min and Liu, Huan Ping},
     title = {The Affine Frame in $p$-adic Analysis},
     journal = {Annales math\'ematiques Blaise Pascal},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {10},
     number = {2},
     year = {2003},
     pages = {297-303},
     doi = {10.5802/ambp.178},
     mrnumber = {2031273},
     zbl = {1066.42501},
     language = {en},
     url = {http://www.numdam.org/item/AMBP_2003__10_2_297_0}
}
Cui, Ming Gen; Yao, Huan Min; Liu, Huan Ping. The Affine Frame in $p$-adic Analysis. Annales mathématiques Blaise Pascal, Volume 10 (2003) no. 2, pp. 297-303. doi : 10.5802/ambp.178. http://www.numdam.org/item/AMBP_2003__10_2_297_0/

[1] Cui, M.G. Note on the wavelet transform in the field Q p of p-adic numbers, Appl. and Computational hormonic Analgsis, Tome 13 (2002), pp. 162-168 | Article | MR 1942750 | Zbl 1022.42025

[2] Daubechies, I.; Grossman, A.; Meyer, Y. Painless nonorthogonal expansion, J. Math. Phys., Tome 27 (1986), pp. 1271-1283 | Article | MR 836025 | Zbl 0608.46014

[3] Heil, E. Ch.; Walnut, F. Continuous and discrete Wavelet transforms, SIAM Review, Tome 31 (1989), pp. 628-666 | Article | MR 1025485 | Zbl 0683.42031

[4] Lian, B.; Liu, K.; Yau, S.-T. Mirror Principle I, Asian J. Math., Tome 4 (1997), pp. 729-763 | MR 1621573 | Zbl 0953.14026

[5] Kozyrev, S.V Wavelet theory as p-adic spectral analysis, Izv. Russ. Akad. Nauk, Ser. Math., Tome 66 (2002), pp. 149-158 | MR 1918846 | Zbl 1016.42025

[6] Vladimirov, V.S; Volovich, I.V; Zelenov, E.I p-adic analysis and Mathematical Physics, World Scientific, 38 -112 (1994) | MR 1288093 | Zbl 0812.46076