We study formal and analytic normal forms of radial and Hamiltonian vector fields on Poisson manifolds near a singular point.
@article{AMBP_2006__13_2_349_0, author = {Monnier, Philippe and Zung, Nguyen Tien}, title = {Normal forms of vector fields on Poisson manifolds}, journal = {Annales Math\'ematiques Blaise Pascal}, pages = {349--380}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {13}, number = {2}, year = {2006}, doi = {10.5802/ambp.221}, mrnumber = {2275451}, zbl = {1165.53375}, language = {en}, url = {archive.numdam.org/item/AMBP_2006__13_2_349_0/} }
Monnier, Philippe; Zung, Nguyen Tien. Normal forms of vector fields on Poisson manifolds. Annales Mathématiques Blaise Pascal, Tome 13 (2006) no. 2, pp. 349-380. doi : 10.5802/ambp.221. http://archive.numdam.org/item/AMBP_2006__13_2_349_0/
[1] Dynamical Systems, AMS Colloq. Publ., Providence, 1927
[2] Analytic form of differential equations, Trans. Moscow Math. Soc., Volume 25 (1971), pp. 131-288 | Zbl 0272.34018
[3] Local methods in nonlinear differential equations, Springer-Verlag, Berlin, 1989 | MR 993771 | Zbl 0674.34002
[4] Normal forms for analytic Poisson structures, Ann. of Math., Volume 119 (1984), pp. 577-601 | Article | MR 744864 | Zbl 0553.58004
[5] Structure locale des variétés de Jacobi, J. Math. Pures Appl., Volume 70 (1991), pp. 101-152 | MR 1091922 | Zbl 0659.53033
[6] Poisson structures and their normal forms, Birkhauser Verlag, Basel, 2005 | MR 2178041 | Zbl 02237399
[7] Momentum mappings and Poisson cohomology, Internat. J. Math., Volume 7 (1996), pp. 329-358 | Article | MR 1395934 | Zbl 0867.58028
[8] Lie groups beyond an introduction, Birkhauser, Boston, 2002 | MR 1920389 | Zbl 1075.22501
[9] Equivariant normal forms of Poisson structures (2005) (math.SG/0510523)
[10] Lectures on celestial mechanics, Springer-Verlag, New York - Heidelberg, 1971 | MR 502448 | Zbl 0817.70001
[11] Lectures on the Geometry of Poisson Manifolds, Birkhauser Verlag, Basel, 1994 | MR 1269545 | Zbl 0810.53019
[12] The local structure of Poisson manifolds, J. Differential Geom., Volume 18 (1983), pp. 523-557 | MR 723816 | Zbl 0524.58011
[13] Convergence versus integrability in Poincaré-Dulac normal forms, Math. Res. Lett., Volume 9 (2002), pp. 217-228 | MR 1909639 | Zbl 1019.34084
[14] Torus action and integrable systems (2004) (math.DS/0407455)
[15] Convergence versus integrability in Birkhoff normal forms, Ann. of Math., Volume 161 (2005), pp. 139-154 | Article | MR 2150385 | Zbl 1076.37045