ANNALES SCIENTIFIQUES
DE L”UNIVERSITE DE CLERMONT-FERRAND 2
Série Mathématiques

LUIGIA AIELLO
MARIO AIELLO
GIUSEPPE ATTARDI

GIANFRANCO PRINI
Informal proofs formally checked by machine

Annales scientifiques de I’Université de Clermont-Ferrand 2, tome 60, série Mathéma-
tiques, n° 13 (1976), p. 31-53

<http://www.numdam.org/item?id=ASCFM_1976__60_13_31_0>

© Université de Clermont-Ferrand 2, 1976, tous droits réservés.

L’acces aux archives de la revue « Annales scientifiques de 1’Université de Clermont-
Ferrand 2 » implique 1’accord avec les conditions générales d’utilisation (http:/www.
numdam.org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit
contenir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

http://www.numdam.org/item?id=ASCFM_1976__60_13_31_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Sci. Univ. Clermont, Sér. Math., fasc. 13, 1976, pp. 31-54

INFORMAL PROOFS FORMALLY CHECKED BY MACHINE

Luigia AIELLO, Mario AIELLO, Giuseppe ATTARDI, Gianfranco PRINI

Consiglio Nazionale delle Ricerche, PISA, Italy

Universita di Pisa, PISA, Italy

ABSTRACT. - The paper describes a research in progress. The research consists in the construction of a
system for generating proofs of theorems in an interactive way with the help of a computer.

The system is described in some detail. The ideas inspiring it are presented, as well as the underlying
logic and a bunch of examples taken from the Mathematical Theory of Computation (i.e: theory of programs,
program schemata, programming languages).

Considerations are made on further developments of the system in two main directions :

i) extension of the logic to increase its expressive power and implementation of other logics ;
ii) extension of the proving capability of the system.

The first extension requires an analysis of the fields of application foreseen for the system, while the

second one requires an accurate analysis of the most commonly used strategies for building proofs. This is

possible only after a long experimentation on the use of the system.

INTRODUCTION

Since a long time, mathematicians formulated the desire of mechanical theorem proving.
The advent of electronic computers has renewed such desire and has proposed new fields of
application. Besides the mechanical construction of interesting proofs in ordinary mathematics,
possible applications are found in the so called «Mathematical Theory of Computation» and
«Artificial Intelligence».

In the Sixties, computer scientists devoted a great effort to the implementation on
electronic computers of automatic theorem provers. Sets of complete and uniform inference
rules have been proposed for such systems - for instance see {1}.

Soon the two following drawbacks of this approach appeared.

32 L. AIELLO, M. AIELLO, G. ATTARDI & G. PRINI

i) The combinatorial explosion, which is inherent to uniform inference rules, leads to
the practical impossibility of proving even simple interesting theorems. Investigations have
been done for finding more efficient strategies. They essentially failed. This failure is
confirmed by a recent result {2} stating that every complete proving algorithm for suffi-
ciently powerful theories is inherently inefficient.

i) Since the steps of the proof are too elementary and the inference rules are far from
usual mathematical reasoning, it is extremely difficult to understand the «outline» of the
proof by analyzing the behaviour of the automatic theorem prover. This is undesirable in case
of both success and failure. In fact, if the analysis of the proving activity is hard to be
performed, no experience can be gained by the user to improve the strategies of the system
in order to obtain better proofs of theorems successfully proved or find a remedy to previous
failures.

To overcome these difficulties, a different approach has been undertaken : the computer
is not asked to prove theorems automatically, but to help the user to build proofs.

Earlier works on this line failed because of the constraints imposed by the computers
and the programming languages existing at that time. A big improvement in man-machine
communication has been introduced by the availability of on-line programming and by the
new very high level programming languages.

Recently this approach has been followed at the Artificial Intelligence Laboratory of
the Stanford University, where proof checkers are being developed for both typed (LCF -
see {3}) and type free (TFL - no description is available at present) X -calculi and for first
order logic (FOL - see {4}).

Presently a proof checker called PPC (Pisa Proof Checker) is being developed at Pisa.
The aim of this paper is to present PPC. We intend to explain its underlying ideas, to give some
insight into the program which realizes it and to explain to what extent it is an improvement with
respect to the already existing proof checkers. After a presentation of the logic presently
implemented in PPC, we give some sample proofs. They have been chosen for providing a
description of the proving strategies included in PPC and of their advantages. Finally, the
applications foreseen for PPC are presented, as well as the kind of experience and insight that is
supposed to be gained by using the proof checker. The main applications expected at the
moment are in the field of Mathematical Theory of Computation. This because one of our
main concern is mechanical program verification. We intend to proceed in the kind of
experiments described in {5} : a programming language has been axiomatized in LCF and
properties of some programs have been machine checked with very compact and elegant proofs.
Besides this application, we think that many others are possible, and not only in the computer
science field.

The greatest advantage we hope to have by using a proof checker instead of an automatic

Informal proofs formally checked by machine 33

theorem prover, besides the feasibility of big meaningful proofs impossible to be done by
nowaday automatic theorem provers, is an analysis of the strategies more frequently used for
building proofs. This makes it possible to mechanize them and to obtain a greater help by
the machine. The help supplied by a proof checker to the user may be increased by adding
theorems already proved as auxiliary deduction rules. Even metatheorems of the logic may
be proved, as shown in { 6} , and reflected into new deduction rules of the logic itself. How
this enriches the proving power of the checker has still to be investigated. What we expect
from this experience is to find the boundary between routine and creative proving activity.
Only the second one has to be left to the mathematician, leaving to the computer all the
routine work. To tell it in other words, the kind of expectation we have is to build a system
which formally checks informal proofs.

L. AIELLO, M. AIELLO, G. ATTARDI & G. PRINI

DESCRIPTION OF THE SYSTEM

In this section we describe, by means of an example, the behaviour of PPC. We take
a simple theorem and show various proofs interactively built for it, using PPC. A sample
dialogue between the user and the system is, in our opinion, the best explanation of its
performance. The dialogue is fictitious because we take a theorem from ordinary mathematics,
while the only logic implemented so far is LCF (it will be described in the next section). We
have chosen such an example since we think that it is closer to common mathematical
reasoning. However the kind of proving strategies is almost the same as in LCF. Note that all
other examples shown in the paper have actually been performed on the machine. The sample

dialogue is also fictitious because we adopt usual mathematical symbols (for more readibility)
n

which are not available on teletypes - for example the formula) (i)
i=0
is written on the teletype as SUMMATION (1,0,N,F(I)) = N # (N + 1)/2. This difficulty may

be overcome if more sophisticated communication media between man and machine are

n(n+ 1)
= =5

available, for example a CRT terminal, where the user can define the symbols he wants, even
with subscripts and superscripts. _

PPC is presently implemented in MAGMA-LISP { 7 } and runs on the IBM 370/168
computer available at the CNUCE of CNR at Pisa. The conversation takes place through a
teletype.

Suppose that a mathematician wants to use PPC for generating a proof of the

proposition

n
Y. z i n(n+ 1)
i=0 2

After a few routine commands for asking the operating system to load PPC he types

ENV PEANO ;
which tells PPC he wants to build a proof in the environment of Peano arithmetic. PPC replies
with the message

##%%% PEANO ARITHMETIC LOADED

The mathematician is thus informed that the system is now ready to operate. It knows
first order predicate calculus with identity (i.e. its syntax, its axioms and its inference rules),
Peano axioms and the definition of arithmetical operations, ordering and many other
predicates and functions on integers. In addition it may have some procedural knowledge
about Peano arithmetic. For instance it knows how to simplify arithmetic expressions into

some standard form. Note that messages written by PPC always begin with « ***%%,

Informal proofs formally checked by machine 35

The user states the theorem he wants to prove by typing

n
GOAL VYn.) j=n(+1) ;
i-0 2

The system gets it and gives it a number.

n
#xx2% GOAL #1 VYo § i. n(n+ 1)
i=1 2

Many goals can be put into the system at the same time. They will be numbered automatically .
Whenever one of them is proved the system gives an appropriate answer.
The mathematician decides that the proof is to be done by induction on n. First he tries

to prove the basis of the induction and states it as a lemma, i.e. a new goal.

0
GOAL 7§ i %0+1 .,
i=0 2

i 0(0+1)
0 2

**%%% GOAL # 2
i

1o

This goal can be established by simply evaluating the left part and the right part of the
equality and checking for their identity. This is done by a simplification algorithm which is
available in the system. It can be either a general procedure applicable to any first order theory
(for instance using unification, modus ponens and equality), or a specialized one, which knows
the rules for the symbolic evaluation of arithmetic expressions. Note that in the first case the
simplification algorithm could be also an implementation of some resolution strategy - a tech-
nique widely used in automatic theorem provers. In PPC it is the user who decides, for each
step of the proof, which axioms and definitions are relevant and must be used by the simpli-

fication algorithm.
SIMPL GOAL # 2

00 + 1)

xxx% GOAL # 2 PROVED 1=

I ~S0

LABEL BASIS ;

The user wants to keep record of the lemma he has just proved. For this reason he gives it a
name by the LABEL command. From now on this lemma will be retrieved by its name
(i.e. BASIS).

Now the mathematician has to prove the induction step. The induction hypothesis is

assumed.

L. AIELLO, M. AIELLO, G. ATTARDI & G. PRINI

n
ASSUME 2_ Oi - 2%_12

wenen]

i - n(n+1) (1)
0 2

T - Bl

i
The system automatically associates a progressive number to each proof step. The first «1»
appearing in the message says that the above assumption is the first step of the proof, while
the «1» in parentheses records the fact that step 1 is an assumption, so it depends only on

itself. If we prove that, on that assumption, the same equality holds for (n+ 1), then the
complete proof is got by the induction principle.

n+ 1
GOAL L i-@*D(n+1)+1)
i=0 2
n+l
sesss GOAL #2 L i -(m*D((n+1)+1)
i=0 2

This goal is again numbered as 2 since the previous goal has already been proved, so it is
removed from the list of «open» goals.

To the following command given by the user

n+1
SPLIT] i ,n;
i=0
the system answers
nt+l n
sxaan 2 Zi=2i+(n+1)
i=0 i=0

Step 2 is added to the proof without dependencies (since it only depends on the definition of
summation which is part of the basic knowledge of the system).

Then the mathematician asks the system to substitute the left hand side of the induction
hypothesis by its right hand side in step 2.

SUBST 11N 2
n+l

xERk® 3 2 1= n(n"' 1) + (n+ 1) (1)
i=0

where (1) means that step 3 depends on step 1.
Goal 2 is proved if the following proposition is proved :

GOAL Mn* 1) + (n.1) . (+D(n+1)+1) .
_1_2__ n .

Informal proofs formally checked by machine 37

sxxex GOAL # 3 "_("7‘“_12 +(m+l)y. @ Do+ 1)+ 1)
2

This can be achieved by simplifying it.
SIMPL GOAL # 3 ;

#s#sx+x GOAL # 3 PROVED Mn+1) . (4, 1), (+1)(n+ D+1)
2 2

LABEL HELP ;
Now by the command
TRANS 3 HELP ;
which applies the transitivity of the equality between step 3 and the lemma named HELP the

proof of goal 2 is achieved.

n+l
aesne 4) _ (n+I)(n+1)+1) (1)
i =0 2
n+1l -
»ex%x GOAL #2 PROVED) i . (n+ 1)((n+ 1)+1)
i-=0 2 “
n
ASSUME) i . mMn+1)
i=0 2

LABEL INDUCTION ;
Now the command
INDUCT BASIS, INDUCTION, n ;

completes the proof.

n
swxse 5 Wn.) i . Moel)
2
i=0
n
##x%# GOAL # 1 PROVED VYn.)} i _ nn+1)
i=0 2
Goal 1 is stated. The induction hypothesis has been discarded : the theorem holds without

hypotheses.

In order to obtain the above simple theorem more than ten commands have been
typed by the mathematician. The amount of details to be communicated to the machine is
discouraging. But something better can be done. The mathematician could have the system to
divide the theorem into lemmas, instead of doing it by himself. The proof would then have
been the following.

38

L. AIELLO, M. AIELLO, G. ATTARDI & G. PRINI

n
GOAL Vn. | i- 2(_"{_!2 .

i=0
7 (ns 1)
swwes GOAL #1 Vn) i- D@+
n.z 1 —_—
i=0
TRY 1 INDUCT n ;
0
sawes GOAL #1#1) i=00+1)
i=0 2
n+ 1 n
e GOAL #1 42 L i (@ D@D agsume [i, D
i=0 2 i=0

TRY 1 SIMPL;

0
ssesw GOAL #1 #1 PROVED) i-00*1

i=0 2
TRY 2 SPLIT n ;

n
sunen] z i = Nn+ 1) 1)
i=0 2

. n
seese GOAL # 1 #2 #1] i+ (n+1) = (* l)g(m D+1)
i=0

TRY 1 SIMPL BY 1 ;

. .
sases GOAL #1 #2 #1 PROVED | i+ (n+1)« (n*1(n+1)+1)
2

i=0
n+1l
sesss GOAL #1 #2 PROVED | i . (@ 1}(n+1) +1) AgSUME
i=0 2
n
J i.nm+1)
i=0 2
3 (@+ 1)
sssse GOAL #1 PROVED Vn. i ,nn*
)) -

i= 0

The command SIMPL ... BY 1 means : use equality contained in step 1 to make simplifications.

This gives an idea of the present performance of PPC. It already represents a big
improvement on a system implementing an unadorned logic. What we are trying to achieve is
something like

Informal proofs formally checked by machine 39

n
GOAL Vn.) i=nn*1)
i=0 2

n
sesxs GOAL # 1 Vn. Z i =n(n+ 1)
i=0 2

TRY 1 INDUCT ;

n

sx##+ GOAL #1 PROVED Vn.)} i. nn+1)
- 2
i=0

If we look at the above three proofs of the theorem we see that the main difference
between the first and the second one consists in the ability of the system to manage the
proof tree. The user is freed from the tiresome work of keeping track of lemmas and putting
them together for deducing new steps. The gap between the second and the third proofs is a
bit more difficult to be filled, since an accurate analysis of the commonly used proof
strategies has to be done. They have to be automatized into a sort of proving algorithm which
might also use some heuristics. For instance, when looking for the variable to induct on. The
third proof is very similar to the one that may be produced by an automatic theorem prover.
The underlying philosophy is, however, quite different. In PPC it is the user who decides the
strategy and splits the proof into elementary steps. The complexity of them depends on the
available proof generation technology. As already noted, improvements in this technology
may be obtained from the experience gained in the proof generation activity,

In designing PPC we took ‘advantage of the experience we gained in the massive use of
the proof checker available at Stanford, while proving properties of the programming language
PASCAL and of PASCAL programs.

Our aim is to design a system which makes the teletype (or the display) an «intelligent»
tool which really helps the matematician in carrying out proofs. For this reason we think that
a very flexible subgoaling mechanism is very useful. In fact the user must have the possibility
of trying a strategy, abandoning it, trying a new one. Then, for instance, having got a new
insight into the problem, he may return again to a previous trial with new ideas of how to go on
with that proof. The system is responsible of managing all incomplete proofs and putting
together the «right steps» of a proof that had success. This feature required a completely new
goal structure for the proof checker.

We consider PPC a system in evolution : we think that a proof checker must grow with
the experience of its users. For this reason we have implemented it in a modular way, so that
additions and modifications can be made quite easily and independently of other parts of the
program. In particular other logics may be easily added since all may rely on the common
management level of the system. Several logics can operate simultaneously, thus allowing the

user to switch to the right one for his specific problem.

40 L. AIELLO, M. AIELLO, G. ATTARDI & G. PRINI

In this paper we do not get into many details about the program which realizes PPC.
A user’s manual and a description of the program are in preparation. To give just a rough idea
we may say that PPC is controlled by a looping routine which reads a command, executes it
and then prints a message. First, each command typed by the user is analyzed. Then, if the
syntax is correct, checks are done to see if the inference we are trying to do is a legal one.
In such a case a new step is added to the internal structure which represents the proof.
Messages from PPC consist in displaying pieces of the internal structure of the proof, by means
of printing routines. '
We hope we have given an idea of how the system works, Certainly we have not given
any idea of how fast it works. We may say that, if no big simplifications are involved, it takes
more time to the user to type the command than to the system to answer.

Informal proofs formally checked by machine 41

DESCRITPION OF LCF

As we have already specified, the logic implemented so far in PPC is the Logic for
Computable Functions (LCF). It has been proposed by Dana Scott in 1969 in an unpublished
paper {8} and is described in detail in { 9 }. LCF is a typed version of Church’s
A -calculus {10}, augmented by some constructs to increase its expressive power. LCF was
proposed by Dana Scott before he found a model for the type-free X -calculus {11} .

Let us informally describe LCF. Our aim is to speak about a hierarchy of functional
spaces, each of them ordered by a suitable ordering relation formalizing the concept «less
defined thany which is recurrent in Mathematical Theory of Computation.

We start with two complete partial orderings (i.e. partially ordered sets having a least
element such that every monotonically increasing sequence contained into them has a least

upper bound) : the complete partial ordering (c.p.o.) of truth values D, and the c.p.o. of
individuals D;, 4. The first one contains only three elements : TRUE, FALSE and UNDEFINED

which are ordered as it is shown in the figure below (the order relation «goes upwards»).

TRUE FALSE

UNDEFINED

The second one is completely arbitrary. For instance it can be the following c.p.o. of natural

numbers augmented by an «undefined» natural number w

or the set of all computable functions with the following order relation : f < g iff for all x
such that f(x) is defined also g(x) is defined and f(x) = g(x).
The c.p.o.’s Dy, and D 4 are the basic spaces in the hierarchy. Higher order spaces can he

built using the following rule : if Dﬁ and D g> are spaces already present in the hierarchy,
then D(B S8) " Dg » Dg-} , which is the space of all continuous functions (i.e.

monotonically increasing functions preserving least upper bounds of monotonically-

42

L. AIELLO, M. AIELLO, G. ATTARDI & G. PRINI

increasing sequences) mapping DB into Dg> , is also in the hierarchy. It is
easy to show that if D 8 and Dﬁ’ are c.p.o.’s then {DB > DB’} is also a c.p.o. if the

order relation and least upper bounds are taken pointwise.
The above hierarchy of spaces is described by LCF. Let D;, 4 be given (note that the

choice of Diﬂg completely determines the hierarchy).
First of all we introduce types. :
i) tr and ind are types, denoting the type of Dy, and D, 4 respectively.
ii) If g and g’ are types, then (g B’) is a type denoting the type of
D(B +69) = {DB e Dﬁ, .
We shall write ;> o> .. B ;™ By asashorthand for (8 | >(Bg > ... > (8.1 By)--))-
We now introduce typed terms (we writet : 8 for denoting a term of type §).
i) The following non logical constants are terms :
- T : tr which denotes TRUE €D, ;
- F :tr which denotes FALSEe D, ;
- UB : B, for every type g , which denotes the least element of Dﬁ (in particular,
Ut_r denotes UNDEFINEDe DE) ;

- CE ~ B 8> B :tr > g > B >B, for every type 8 , which denotes the conditional function
£g € {Dy 1 Dg+ {Dg > Dg}}} defined as follows :
y if x = TRUE
EB x)yNz) = z if x = FALSE
the least element of Dﬂ if x = UNDEFINED
(note that EB is continuous for every f) ;

- Y(ﬁ ~8)> B (B *>B) »B, for every (tr # 8 # ind), denotes the least fixpoint operator

FIXg € 18 Dg ~ Dﬁ} > Dg} defined as follows :
FIXﬁ (f) = theleast x such that x = f(x)
(the existence of a fixpoint operator FIXB and its continuity are guaranteed by a theorem

due to Knaster and Tarski).

ii) For every type § there exists a countable set of variables of type 8 :all of these
variables are terms. They are intended to denote arbitrary objets in Dﬁ . We do not give these

variables explicitely : we shall refer to them by the metavariables x, y and z.

Informal proofs formally checked by machine 43

iii)If s: 1> Pgandt: g, aretermsthens(t): fo is a term denoting the value of
the function denoted by s when applied to the argument denoted by t. Terms of this kind
are called applications.

iv) If x: B isavariable and s: g isaterm,then (A x.s) : 81> Bo isaterm denoting
the function generated by the object denoted by s when all possible denotations in D By e

assigned to the variable x. Terms of this kind will be called A -abstractions. The special constant

A binds variables in a way similar to the quantifiers of the predicate calculus.

The following shorthands will be used through the paper (s, t and u will be used as meta-
variables for terms) :

l) S(tl, ceey tn) for S(tl(t2 ves (tn-l(tn» .))

) N xy..xp8 for (X x3.(A xg. ... A\ x,.8) ...))

i) A x.s(t) for (A x.s(t))

iv) (s> tu) for Ctr-*ﬁ-»ﬁ +B(S +t,u)

V) (a f.S) for Y(B+ﬁ)+ B()\ f.S)

vi) U for Uﬁ

Formulas of LCF are defined as follows.

i) Ifs: 8 andt:pB aretermsthen s< t isan atomic formula which is true if the
object denoted by s is less than (in DB) the object denoted by t, false otherwise.

ii) If Py ... P, are atomic formulas then { P, Py } is a formula which is true if all
P, are true, false otherwise.

Note that the above notions of truth and falsity of formulas depend on the choice of D 4.

If P and Q are formulas then P — Q is a sentence which is valid if Q is true in all
hierarchies in which P is true.
The following shorthands will be used for formulas and sentences (P and Q will be used

as metavariables for formulas) :

) Vxp..xps< t for Axq..xps < Axp e xpt

(this notation is consistent with the pointwise definition of the order relation for higher-order
spaces)
ii) s:t <u for (s>t,U) < (s >u, U)
(the symbol :: plays the role of a rudimentary implication : the above formula can be read
«if sis TRUE then t < u else nothing can be said»)
iii)s= t for {s <t,t< s}

iv) — Q for P —Q when P is empty

44 L. AIELLO, M. AIELLO, G. ATTARDI & G. PRINI

v) Ps <t—Q,8 <t for { Pp,..,Pps< t}—{Qqp,..,0p,8< t'}
if P=(Py,.., Pn} and Q ={Qy, o Qp d

The axioms and inference rules of the logic are now presented (axioms are given as

rules with no premises).

P {0Qq, s
INCL — 19 O i=1,..n
P Qi}
Py —Q Pyt— Q
CON]J 1 1 2 2
Py UPp =01 Y Q
CUT P —Q Py — Qg if every atomic formula
Py — Qo in Py is also in Qg
Pl—t<u p ¢
APPL (the dual rule =t
P —s(t) < s(u) Pl—1t(s) < u(s)
is easily derivable in LCF)
REFL
— s8<s
P{— s <t Py |— t <u
TRANS
P]. v P2 I— s <u
MIN1
—U<s
MIN2 —_—_—
— Us) < U
CONDT
F— (T »>s,t)= s
CONDF

— (F>s,t)=s

Informal proofs formally checked by machine 45

CONDU
— (U+st) =U
P <
ABSTR st
P —Axs< Ax.t
{y/x} s denotes the result of substituting
ALPHACONYV - y for all free occurrences of x in s, provided
= Axs = Nydy/x}s that no free occurrence of x in s is trans-
formed into a bound occurrence of y in s
BETACONV {t/x}s denotes the result of

= (Axs)(t)= {t/x) s substituting t for all free occurrences of
x in s : possible conflicts between free
variables of t and bound variables of s
are resolved by suitable renamings
(alpha-conversions)

ETACONY ___ if x isnotfreein s

— Ax.8(x) = s
Py, s5T— Q Py,s = FI— Q P3,s U —0Q
CASES
P1U Py v P3 —Q
FIXP
= Y(x)= x(Y(x))
P, —{U/x} Q Py U Q —{s(x)/x} Q
INDUCT

P, VP, — {Y(s)/0 Q

To informally describe the INDUCT rule, let us suppose P} = P9 = P. If we want to prove

that Q holds (depending on P) for the least fixpoint (denoted by Y(s)) of a function (denoted
by s) in Dﬁ , it is sufficient to prove that Q holds (depending on P) for the least element
(denoted by U) of Dﬁ and that, whenever Q holds for some object (denoted by x), it also
holds (depending on P) for the object denoted by s(x). The soudness of the INDUCT rule is

assured by the following observations.

46 L. AIELLO, M. AIELLO, G. ATTARDI & G. PRINI

i) U, s(U),s(s(U)), ..., 8((s ... (8(U)) ...)), +-.
denotes a monotonically increasing sequence.
i) Y(s) denotes the least upper bound of the above sequence (this easily follows from the
Knaster-Tarski theorem cited above),
iii) The terms contained in Q denote continuous functions, hence least upper bounds
are preserved.
It is evident that LCF is strongly inspired by Church’s A-calculus {10 1. Since in the
\ -calculus with types it is not possible to define all computable functions, a fixpoint operator
has been added to allow recursive definitions. The FIXP and INDUCT rules allow proofs about
them. Definitions by cases are often required, so conditional terms are added - they play the
role of the construct «if ... then ... else ...» which is present in most programming languages.
The CASES, CONDT, CONF and CONDU rules allow proofs to be done by performing a case
analysis on the truth value of predicates.
Extensions of LCF to include some predicate calculus and an enrichment of the type

structure may be found in {12}.

Informal proofs formally checked by machine 47

EXAMPLES

In this section, we present some sample proofs actually run on the available system.
They are taken from the Mathematical Theory of Computation.

We first put into the system the definitions of some functions which denote the
semantics of the statements of a simple but complete programming language : i.e. «if ... then

gﬁg», sequencing of statements and «while» statement (see for instance {5}).
Ap f g s.p(s) > f(s), g(s)

A g s.g(f(s)

WHILE = Ap f.(o g.COND(p, f x g, ID))

COND

X

1l

where
ID =X xx

The above functions define the semantics of programming language constructs denotatignally,
as a mapping from stores into stores. For example, COND applied to a test p and a couple of
functions f and g is a map from stores into stores. The operator x denotes the composition of
functions. Note that the order of composition respects the order of sequencing of statements
in programming languages, i.e.

f x g = Xsgf(s)
Note also that binary operators may be declared to be infix. If % is declared to be infix, we
may write f X g instead of x (f,g), while x (f) is still a legal term, which may be proved to be
equal to A g s.f(g(s)).

Besides the above functions, the semantics of the programming language is defined by
an axiomatization of the store and by appropriate functions for storing values into it and
evaluating boolean and arithmetic expressions.

Let F, G, H denote statements and F;G the compund statement obtained by conca-
tenating F and G. In the first example, we prove the following : if, whenever the execution of
G terminates also the execution of H terminates yielding the same result, then the same holds
for the compound statements F; G and F ; H. Let f, g, h be the functions denoting the
meaning of F, G, H. Then what we should prove is

if g<h then Vffxg <fx h
The command we give is :

GOAL Vffx g<f x h ASSUME g<h ;
#esx2 GOAL # 1 Vff xg< fx h ASSUME g<h

This goal can be achieved by the tactic ABSTR, which is the converse of the abstraction rule,

i.e. an instantiation. The proof is performed as follows :

48 L. AIELLO, M, AIELLO, G. ATTARDI & G. PRINI

TRY 1 ABSTR ;

sessx 1 g<h (1)

ssvse GOAL #1 #1 fxg<f xh

APPL x(f) 1 ;

#exws 3 fxg<f xh (1)

ss#%» GOAL #1#1 PROVED fx g<fxh

s#xs% GOAL #1 PROVED Vffx g< fxh ASSUME g< h

which completes the proof.
The second example is a simple property about conditional statements, namely :
if P thenif P then A else B else C
is equivalent to
if P then A else C

Let p, a, b, ¢ denote the meaning functions associated to P, A, B, C. Since COND is the
meaning function of the statement «if ... then ... else», the goal to be proved is :

GOAL Vp a b c.COND(p, COND(p,a,b),c) = COND(p,a,c);

The calculus is extensional, so the above formula is a mapping from stores into stores, even if
the variable s does not appear explicitly in it. In fact, the above formula and
Vp a b ¢ s.COND(p, COND(p,a,b), c)(s) ZCOND(p,a,c)(s)
are interderivable in LCF, The system gets the goal and answers
##x#® GOAL #1 Vp a b c.COND(p, COND(p,a,b),c) = COND(p,a,c)
By using the tactic SIMPL it is possible to save some tedious steps of the proof such as :
i) performing all possible 8 -reductions ;
ii) applying the rules of inference of the SIMPSET, until possible ;
iii) substituting terms for terms according to the equivalence formulas of the SIMPSET,
until possible.
SIMPSET is a set of inference rules. Usually it contains CONDT, CONDF, CONDU, MIN1
and MINZ2, but it can be modified by the user and may change during a proof. Also the
equivalence formulas of SIMPSET are set by the user. In particular, function definitions are
often put into the SIMPSET in order to have names substituted by the corresponding
definitions.
Suppose we have put the definition of COND into the SIMPSET. Then by the command
TRY SIMPL ;

we get

Informal proofs formally checked by machine

#sxxe GOAL #1 #1 Apa b ¢ s(p(s)>(p(s)> a(s), b(s)), e(s))=
Apa b c s(p(ra), o)

This goal can be achieved by the tactic ABSTR, and then by performing a case analysis on
the predicate p(s).

TRY ABSTR ;

#xxxs GOAL #1 #1#1 (p(s)> (p(s) > a(s), b(s)), e(s)) =
(p(s)> a(s), c(s))

TRY CASES p(s) ;

zxesx GOAL # 1 #1 #1#1 (p(s)~ (p(s) >a(s), b(s)), c(s)) =

(p(s) >a(s), c(s)) ASSUME p(s) = T
sexvx GOAL # 1 #1 #1 #2 (p(s) »(p(s)> a(s),b(s)), c(s)) =
(p(s) > a(s), c(s)) ASSUME p(s) = U

sxxex GOAL # 1 #1# 1#3 (p(s) > (p(s)~ a(s), b(s)), c(s)) =
(p(s) > a(s), c(s)) ASSUME p(s) = F
The above three goals are now proved by simplifying them. The assumption about the truth

value of p(s) is automatically put into the SIMPSET associated with the corresponding goal.
In this way we have

TRY 1 SIMPL ;
ssssx] p(s)= T (1) ASSUME
sxess GOAL #1#1#1#1 PROVED (p(s)> (p(s)> a(s), b(9), e(s)) =

(p(sy> a(s), c(s))
ASSUME p(s) = T

TRY 2 SIMPL;
sawe 2 pe) U @)
#xxee GOAL #1 #1#1 #2 PROVED (p(s) > (p(s) > a(s), b(s)), c(s)) =
(p(s) ~>a(s), c(s))
ASSUME p(s) =U
TRY 3 SIMPL;
ewne 3 pe) ZF (3
x#x2% GOAL # 1 #1# 1#3 PROVED (p(s) >(p(s) ~a(s), b(s)), c(s)) =

(p(s) *a(s), c(s))
ASSUME p(s) =F

50 L. AIELLO, M. AIELLO, G. ATTARDI & G. PRINI

The system now backs up on the goal tree : every subgoal has been proved, hence

the theorem is achieved.
#+xxx GOAL #1 #1 #1 PROVED (p(s)~> (p(s) a(s),b(s)), c(s))=
(p(s)> a(s), <(s))
#xxx2 GOAL #1#1 PROVED Xp ab c s(p(s)*(p(s)™ a(s),b(s)).c(s)) =
Ap a b c s.(p(s)~>a(s), c(s))
##x#%* GOAL # 1 PROVED VYp a b c.COND(p,COND(p,a,b),c) =COND(p,a,c)
We now present an example showing how an already proved assertion may be

transformed into a theorem which may then be used as a tactic,

The theorem we prove first is :
F<G if F=agFUN@g and G =FUN(G)
The two hypotheses of the theorem (steps 1 and 2) are assumed. Then the goal is
tackled by induction. Two subgoals are generated. The first one (basis of the induction) is

established by simplification. The second one (induction step) is proved by using the mono-

tonicity of the functions we are dealing with and the transitivity of the relation < .
ASSUME F = a g FUN(g), G = FUN(G);
#*#x%x%x]1 F = agFUN(@g) (1)
#xxx% 2 G EFUNG) (2)
GOAL F <G;
wesse GOAL #1 F< G
TRY 1 INDUCT 1;
#ewae GOAL #1#1 U<G
##x#2 GOAL #1#2 FUN@)< G ASSUME g< G
TRY 1 SIMPL;
#xx2¢ GOAL #1 #1 PROVED U <G
TRY 2;
#xxex 3 o< G (3)
APPL FUN 3 ;
#xxx% 4 FUN(g) < FUNG) (3)
SYM 2;
#xx2x 5 FUN(G)
TRANS 4 5 ;

G @

% % K % ¥ 6 FUN(g) < G (2 3)

Informal proofs formally checked by machine 51

#x22¢ GOAL # 1 #2 PROVED FUN(g) <G ASSUME g< G
#ex#x GOAL # 1 PROVED F<G
The above result can be established as a theorem by giving it a name.
THEOREM MINIMALITY ;
####* THEOREM MINIMALITY F<G ASSUME F =o g.FUN(g),G = FUN(G)
We now use this theorem in a proof of equivalence of two different terms denoting
the semantics of the while statement.

The first two commands are given to assume the two definitions of the semantics of
the while statement. Then the goal is put into the system. It is first split into two subgoals.

ASSUME WHILE1L = ag.(\q f.COND(q,f * g(q,f),ID)) ;
#+x2%] WHILE1 =ag.(X q f.COND(qf *xg(q.f),ID))
ASSUME WHILE2 =\ q f.(a g.COND(q,f x g,ID)) ;
#%«x% 2 WHILE2 =\ q f.(ag.COND(q,f x g,ID))
GOAL WHILE1= WHILE2;

#xx%x GOAL #1 WHILE]= WHILE2

TRY 1 HALF;

#xx¥x GOAL #1# 1 WHILE1 < WHILE2

#x%x% GOAL #1# 2 WHILE2 < WHILE1

n

Only the first goal is now proved. The proof of the second one is analogous.
TRY 1 USE MINIMALITY FUN < Xh q f.COND(q,f* h(q,f),ID);
This command tells the system to use the theorem MINIMALITY to prove the goal by

instantiating the metavariable FUN appearing in the theorem to be the term
Ah q f.COND(q,f xh(q,f), ID). Two subgoals are generated, corresponding to the two

assumptions of the theorem.
#exex GOAL #1#1#1 WHILELI= ag.(Ah q f.COND(q.f x h(q,f),ID))(g)
®z#2% GOAL #1#1 #2 WHILE2 = (\ h q f.COND(q.fx h(q,f),ID)) (WHILE2)
The two subgoals are now proved in a fairly standard way. The first one is got by simplification.
TRY 1 SIMPL ;
#xx22 GOAL # 1 #1 #1 PROVED WHILEl1=0a g.(Ah f g.COND(q,f* h(q,f),ID))()

The second goal is got by simplifying it and then by a number of instantiations and an

application of the rule FIXP.

TRY 2 SIMPL;
weusx GOAL #1#1 #2#1 WHILE2= A q f.COND(q,f x WHILE2(q,f),ID)

52 L. AIELLO, M. AIELLO, G. ATTARDI & G. PRINI

TRY 1 ABSTR ;
#exex GOAL #1 #1#2#1 #1 WHILE2(q,f) = COND(q,f x WHILE2(q,f),ID)

SAPPL 2qf;

ss+#%% 3 WHILE2(q,f) = g.COND(q,f xg,ID)

FIXP 3;

ss###% 4 WHILE2(q,f) = COND(q,f xWHILE2(q,f),ID)

ss#%% GOAL #1# 1#2#1 #1 PROVED WHILE2(q,f)=COND(q,fx WHILE2(q,f),ID)
s###2 GOAL #1#1#2#1 PROVED WHILE2z Aq f.COND(q,f*x WHILE2(q,f),ID)
s#%#% GOAL # 1 # 1# 2 PROVED WHILE2 = (A h q f.COND(q,f * h(q,f),ID)(WHILE2)
ss#%# GOAL # 1# 1 PROVED WHILEl < WHILE2

The command SAPPL is equivalent to a command APPL followed by a SIMPL.

CONCLUSIONS

In the section devoted to examples we have chosen short meaningful proofs using
different strategies. Certainly we have not given an idea of the dimensions of proofs that
can be performed. We have not yet built big proofs in PPC, but we may make reference to
the experiments reported in {13} and {5} about the construction of proofs on the LCF
available at Stanford. We think that PPC will eventually allow to build even larger proofs.

Even though the whole project originated by an experience on proving properties of
programs, we do not want PPC to be just a tool for providing programs with a warranty of
correctness. We want it to be a formal framework in which to design programming languages
by defining their semantics and then discussing their properties in the form of theorems with
a machine checked proof.

Besides the insight we hope to have into the theory of programming, we expect to
learn which patterns of proofs are more often used and to be able to add them easily to the
system as automatic strategies. In this way it is possible to have a system that actually helps

the mathematician since it may grow as the experience of the mathematician grows.

10 -

11 -

12-

- L.

- M.

Informal proofs formally checked by machine 53

REFERENCES

- J.A. ROBINSON - A machine oriented logic based on the resolution principle -

Journal of the ACM - Vol. 12 - 1965.

. EHRENFEUCHT, M. RABIN - There is no perfect proof procedure -

Unpublished paper - Underground Jerusalem - 1972.

. MILNER - Logic for computable functions : description of @ machine implementation -

Artificial Intelligence Memo No 169 - Stanford University - 1972.

. WEYHRAUCH, A. THOMAS - FOL : a proof checker for first order logic -

Artificial Intelligence Memo No 235 - Stanford University - 1974.

AIELLO, M. AIELLO, R. WEYHRAUCH - The semantics of PASCAL in LCF -
Artificial Intelligence Memo No 221 - Stanford University - 1974.

AIELLO, R. WEYHRAUCH - Checking proofs in the metamathematics of first order logic -
Artificial Intelligence Memo No 222 - Stanford University - 1974 - Also in Proc. of the
Fourth International Joint Conference on Artificial Intelligence - Thilisi - 1975.

. MONTANGERO, G. PACINI, F. TURINI - MAGMA-LISP : a «<machine language» for

artificial intelligence - Proceedings of the Fourth International Joint Conference on
Artificial Intelligence - Thilisi - 1975.

. SCOTT - An alternative approach to CUCH, ISWIM, OWHY - Unpublished paper -

Underground Princeton - 1969.

. MILNER - Models of LCF - Artificial Intelligence Memo No 186 - Stanford University - 1973.

. CHURCH - The calculi of \-conversion - Annals of Mathematical Studies No 6 -

Princeton - 1941.

. SCOTT - Continuous lattices - Technical Monograph PRG-7 - Oxford University - 1971.

. MILNER, L. MORRIS, M. NEWEY - 4 logic for computable functions with reflexive and

polymorphic types - Proceedings of the International Symposium of Proving and
Improving Programs - Arc et Senans - 1975.

13 - M. NEWEY- Formal semanticsof LISP with applications to program correctness - Thesis -

Artificial Intelligence Memo No 257 - Stanford University - 1975.

