ANNALES SCIENTIFIQUES
 DE L'UNIVERSITÉ DE CLERMONT-FERRAND 2
 Série Probabilités et applications

R. ZAHAROPOL
Operator theorems on L^{P}-convergence to zero $(1 \leqslant p<+\infty)$
Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 78, série Probabilités et applications, $\mathrm{n}^{\circ} 2$ (1984), p. 15-23
http://www.numdam.org/item?id=ASCFPA_1984__78_2_15_0

L'accès aux archives de la revue «Annales scientifiques de l'Université de ClermontFerrand 2 » implique l'accord avec les conditions générales d'utilisation (http://www. numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

OPERATOR THEOREMS ON $L^{\text {P }}$-CONVERGENCE TO ZERO $(1 \leqslant p<+\infty)$

R. ZAHAROPOL

1. Introduction.

Let. ($\mathrm{X}, \Sigma, \mathrm{m}$) be a measure space (where m is a positive, o-additive measure) and let $L^{P}(X, \Sigma, m), 1 \leq p \leq+\infty$ be the usual Banach spaces. A linear bounded operator $T: L^{p}(X, \Sigma, m) \rightarrow L^{p}(X, \Sigma, m)$ is called a positive contraction of $L^{p}(X, \Sigma, m)$ if it transforms non-negative functions into non-negative functions and if $\|T\|_{p} \leq 1$.

Our goal here is to prove that if T is simultaneously a positive contraction of $L^{P}(X, \Sigma, m)$ for every $1 \leq P \leq+\infty$ and if we consider the set $\Omega \subseteq R$,

$$
\Omega=\left\{\frac{1}{m(A)} \cdot \int_{A} T 1_{A} d m / A \in \Sigma, \quad 0<m(A)<+\infty\right\}
$$

then if inf $\Omega>0$ it follows that for every $1 \leq q<+\infty \lim _{n \rightarrow+\infty}\left\|T^{n+1}-T^{n}\right\|_{q}=0$.

For notational conveniences we will recall some definitions from [1].

By a partition $E=\left\{E_{1}, \ldots, E_{n}\right\}$ of X we mean a finite partition of X such that $E_{i} \in \Sigma, i=1,2, \ldots, n, \quad 0<m\left(E_{1}\right)<+\infty$ and such that only the first k sets $(1 \leq k \leq n)$ have finite non-zero measures. Let $1_{p}(k, \mu)(1 \leq p \leq+\infty)$ be the finite dimensional L^{p}-space defined by $\mu_{i}=\mu\left(\left\{i^{\eta}\right\}\right)=m\left(E_{i}\right), \quad i=1,2, \ldots, k$ (that is $1_{p}(k, \mu)=L^{p}\left(\Gamma_{k}, P\left(\Gamma_{k}\right), \mu\right)$ where $\Gamma_{k}=\{1,2, \ldots, k\}$ and the measure μ is generated by the real, non-zero, positive numbers $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$). The space $I_{p}(k, \mu)$ will be called the finite dimensional L^{p}-space generated by the partition $E=\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$. The norm on $1_{p}(k, \mu)$ will be denoted by
$\left\|\|_{p}\right.$.

If E is a partition of X we will denote by T_{E} the conditional expectation operator as defined by Akcoglu [1].
2. Positive Contractions of L^{1} or L^{∞}-spaces.

Proposition 1. Let T be a positive contraction of $L^{1}(X, \Sigma, m)$.
I) The following are equivalent:
a) There exists $\rho>0$ such that if $A, B \in \Sigma, 0<m(A), m(B)<+\infty$, $A \cap B=\phi \quad$ then

$$
\int\left(1_{B}-1_{A}\right) T 1_{A} d m<(1-\rho) m(A)
$$

b) There exists $n>0$ such that for every partition E of X $\left\|T_{E} T-I\right\|_{I}<2(1-n)$.
II) If T satisfies $a)(o r b)$ then $\lim _{n \rightarrow+\infty}\left\|T^{n+1}-T^{n}\right\|_{1}=0$.

Proof. I) a) $\Rightarrow b)$. Let $E=\left\{E_{1}^{\prime}, \ldots, E_{n}\right\}$ be a partition of X and let $1_{1}(k, \mu)$ be the finite dimensional L^{1}-space generated by the partition E.

The operator $T_{E} T$ as a positive contraction of $I_{1}(k, \mu)$ has the matrix $\left(\frac{1}{m\left(E_{j}\right)} \int_{E_{j}} T 1_{E_{i}} d m\right)_{i, j=1, \ldots, k}$.

It follows that

$$
\begin{aligned}
& \left\|T_{E} T-T\right\|_{1}=\max _{1 \leq i \leq k}^{\left.1 \leq m\left(E_{i}\right)\right)^{-1}} \cdot \underset{\substack{j=1 \\
j \neq i}}{k} \frac{1}{m\left(E_{j}\right)} \cdot \int_{E_{j}} T 1_{E_{i}} d m \cdot m\left(E_{j}\right)+ \\
& \left.\left.+\left(1-\frac{1}{m\left(E_{i}\right)} \int_{E_{i}} T 1_{E_{i}} d m\right) \cdot m\left(E_{i}\right)\right)\right)=
\end{aligned}
$$

Using a) we obtain that

$$
\left\|T_{E} T-I\right\|_{1}<\max _{1 \leq 1 \leq k}\left(\left((1-\rho) m\left(E_{i}\right)+m\left(E_{i}\right)\right) \cdot \frac{1}{m\left(E_{i}\right)}\right)=2\left(1-\frac{\rho}{2}\right)
$$

and if we note $n=\frac{\rho}{2}$ we obtain b).
b) \Rightarrow a). Let $A, B \in \Sigma, 0<m(A), m(B)<+\infty$ be two disjoint sets. We define the partition $E=\{A, B, X \backslash(A \cup B)\}$. It follows that $\left\|T_{E}{ }^{T-I}\right\|_{1}<2(1-n)$ and we obtain that

$$
\left(1-\frac{1}{m(A)} \int_{A} T 1_{A} d m\right) m(A)+\int_{B} T 1_{A}{ }^{d m}<2(1-n) m(A) .
$$

The last inequality implies that

$$
\int\left(1_{B}-1_{A}\right) \cdot T 1_{A} d m<(1-2 \eta) m(A)
$$

and a) follows as $\rho=2 n$.
II) Suppose T satisfies $b)$ and let $f \in L^{1}(X, L, m)$ be such that $\|f\|_{1} \leq 1$. By lemma 3.1 from [1] it follows that there exists a partition E of X such that

$$
\left\|f-T_{E} f\right\|_{1}<\frac{\eta}{2} \quad \text { and } \quad\left\|T f-T_{E} T T_{E} f\right\|_{1}<\frac{n}{2}
$$

It follows that

$$
\begin{aligned}
& \|(I-T) f\|_{1}<\left\|f-T_{E}\right\|_{1}+\left\|\left(I-T_{E} T\right) T_{E} f\right\|_{1}+\left\|T_{E} T T_{E} f-T f\right\|_{1}< \\
& <\frac{n}{2}+2(1-n)+\frac{n}{2}=2\left(1-\frac{n}{2}\right)
\end{aligned}
$$

We obtain that $\|I-T\|_{1} \leq 2\left(1-\frac{n}{2}\right)$ and the proof is completed by using the "zero-two" law for positive contractions in L^{1}-spaces. (Theorem 1.1 from [4]).

Proposition 2. Let T be a positive contraction of $L^{\infty}(X, L, m)$. The following are equivalent :
i) There exists $\alpha>0$ such that if $A, B \in \Sigma, A \cap B=\phi, 0<m(A)$, $m(B)<+\infty$ then

$$
\int_{B} T\left(1_{A}-1_{B}\right) d m<(1-\alpha) m(B)
$$

ii) There exists $\beta>0$ such that for every partition E of X, $\left\|T_{E} T-I\right\|_{\infty}<2(1-\beta) \cdot$

Proof. i) \Rightarrow ii) Let E be a partition of X and let $1_{\infty}(k, \mu)$ be the finite dimensional L^{∞}-space generated by the partition E. The operator $T_{E} T$ thought as operator on $1_{\infty}(k, \mu)$ has the matrix $\left(\frac{1}{m\left(E_{j}\right)} \int_{E_{j}} T I_{E_{i}} d m\right) i_{i, j}=1, \ldots, k$.

It follows that
$\left.\left\|T E^{T}-I\right\|_{\infty}=\max _{1 \leq j \leq k} \underset{\substack{i=1 \\ i \neq j}}{k} \frac{1}{m\left(E_{j}\right)} \int_{E_{j}} T 1_{E_{i}} d m+1-\frac{1}{m\left(E_{j}\right)} \int_{E_{j}} T 1_{E_{j}} d m\right)=$

Using i) we obtain that

Taking $B=\frac{\alpha}{2}$ the assertion follows.
ii) \Rightarrow i) Let $A, B \in \Sigma$ be such that $A \cap B=\phi, 0<m(A), m(B)<+\infty$.

We will define the partition $E=\{A, B, X \backslash(A \cup B)\}$.

Given that $\left\|T_{E} T-I\right\|_{\infty}<2(1-\beta)$ it follows that

$$
1-\frac{1}{m(B)} \int_{B} T 1_{B} d m+\frac{1}{m(B)} \int_{B} T 1_{A} d m<2(1-\beta) .
$$

and if we note $\alpha=2 \beta$ we obtain i).

3. The Main Results

Theorem 3. Let T be simultaneously a positive contraction of $L^{q}(X, \Sigma, m)$
for every $1 \leq q \leq+\infty$. If T satisfies condition a) of Proposition 1 and condition i) of Proposition 2, then for every $1 \leq p<+\infty$ $\lim _{n \rightarrow+\infty}\left\|T^{n+1}-T^{n}\right\|_{p}=0$.

Proof. We will assume $1<p<+\infty$ for if $p=1$ we obtain a special case of Proposition 1.

For every partition E of X we will note $S_{E}=T_{E} T$. By Proposition 2 it follows that there exists $\beta>0$ such that for every partition E of X, $\left\|S_{E}-I\right\|_{\infty}<2(1-\beta)$. If $1_{\infty}(k, \mu)$ is the finite dimensional L^{∞}-space generated by the partition E then its dual space will be $1_{1}\left(k, \mu_{0}\right)$ where μ_{0} is the counting measure $\left(\mu_{0}(\{i\})=1, i=1,2, \ldots, k\right)$, Using the proof of the "zero-two" law for positive contractions in L^{1}-spaces (Theorem 1.1 from [4]) it follows that given $\varepsilon>0$ there exists $n_{1} \in N$ (which depends only on B and ε) such that for every partition E of X and for every $n \geq n_{1}$ $\left\|S_{E}^{n+1}-S_{E}^{n}\right\|_{\infty}=\left\|S_{E}^{*} n^{n+1}-S_{E}^{*}\right\|_{I}<\frac{\varepsilon}{3}$ where S_{E}^{*} is the dual operator of S_{E} $\left(S_{E}^{*}\right.$ is a positive contraction of $1_{1}\left(k, \mu_{0}\right)$).

By Proposition 1 and the proof of Theorem 1.1 from [4] for the same $\varepsilon>0$ there exists $n_{2} \in N$ (which depends on $\frac{\rho}{2}$ and ε) such that for every partition E of X and for every $n \geq n_{2}\left\|S_{E}^{n+1}-S_{E}^{n}\right\|_{1}<\frac{\varepsilon}{3}$.

By the Riesz convexity theorem (see for instance [2]) it follows that if $1 \leq p \leq+\infty$ and $n \geq \max \left\{n_{1}^{i}, n_{2}\right\}$ then for every partition. E of X $\left\|S_{E}^{n+1}-S_{E}^{n}\right\|_{P}<\frac{\varepsilon}{3}$.

If we put $n_{0}=\max \left\{n_{1}^{i}, n_{2}\right\}$ then from the last inequality it follows that for every partition E of $X\left\|S_{E}^{n_{0}+1} T_{E}-S_{E}^{n_{O}} T_{E}\right\|_{p}<\frac{\varepsilon}{3}$.

Now let $f \in L^{P}(X, \Sigma, m)$ be such that $\|f\|_{p} \leq 1$. By lemma 3.1 from [1] it follows that there exists a partition E of X such that

$$
\left\|T^{n_{o}+1} f-S_{E}^{n_{0}+1} T_{E} f\right\|_{P}<\frac{\varepsilon}{3}
$$

and

$$
\left\|T^{n_{O_{f}}}-S_{E}^{n_{O}} T_{E} f\right\|_{p}<\frac{\varepsilon}{3}
$$

It follows that

$$
\begin{aligned}
& \left\|T^{n_{o}+1}{ }_{f}-T^{n_{0}}\right\|_{p} \leq\left\|T^{n_{0}+1} f-S_{E}^{n_{0}+1} T_{E} f\right\|_{p}+
\end{aligned}
$$

We obtain that $\left\|T^{n_{0}+1}-T^{n_{0}}\right\|_{p} \leq \varepsilon$ and the theorem follows as $\left(\left\|T^{n+1}-T^{n}\right\|_{p}\right)_{n}$ is a non-increasing sequence.

Theorem 3 has the following consequence:

Corollary 4. Let T be simultaneously a positive contraction of $L^{q}(X, \Sigma, m)$ for every $1 \leq q \leq+\infty$.

If there exists $0<\gamma<1$ such that for every $A \in \Sigma$, $0<m(A)<+\infty, \int_{A} T 1_{A} d m \geq \gamma m(A)$ then for every $1 \leq p<+\infty$ $\lim _{n \rightarrow+\infty}\left\|T^{n+1}-T^{n}\right\|_{p}=0$.

Proof. It is enough to prove that T satisfies condition a) of Proposition 1 and condition i) of Proposition 2.

Let $A, B \in \sum$ such that $0<m(A), m(B)<+\infty$ and $A \cap B=\phi$. It follows that
$\int\left(1_{B}-1_{A}\right) \cdot T 1_{A} d m \leq \int T 1_{A} d m-\int_{A} T 1_{A} d m \leq(1-\gamma) m(A)$.

Taking $\rho=\quad \gamma$ it follows that condition a) of Proposition 1 is satisfied.

On the other hand

$$
\int_{B} T\left(1_{A}-1_{B}\right) d m \leq \int 1_{B} d m-\int_{B} T 1_{B} d m \leq(1-\gamma) m(B)
$$

(we used here that T is a positive contraction of $L^{\infty}(X, \Sigma, m)$ and therefore 1_{B} T $1_{A} \leq 1_{B}$).

Taking $\alpha=\gamma$ it follows that condition i) of Proposition 2 is also satisfied.

Remarks. 1) The fact that the existence of $\gamma>0$ implies the existence of $\rho>0$ was noticed by Professor Foguel.
2) If T as a positive contraction of a finite dimensional L^{1}-space $1_{1}(k, \mu)$ is generated by the matrix $\left(a_{i j}\right)_{i, j=1, \ldots, k}$ and if $a_{i i} \neq 0$ for every $\mathrm{i}=1,2, \ldots, \mathrm{k}$ (that is there exists $\rho>0$ such that all the elements of the diagonal of $\left(a_{i j}\right)_{i, j}$ are greater than ρ) then by the "zero-two" law for positive contractions in L^{1}-spaces (Theorem 1.1 from [4]) we obtain that $\lim \left\|T^{n+1}-T^{12}\right\|_{1}=0$.
n

If we note that $a_{i i}=\frac{1}{\mu_{i}} \int_{\{i\}} T 1_{\{i\}} d \mu$ it follows that Corollary 4 can be thought of as an extension of the above observation.

References

1. Akcoglu, M.A.: "A pointwise ergodic theorem in L_{p}-spaces." Canadian J. of Math., Vol. XXVII, no. 5, 1975, 1075-1082.
2. Dunford, N., Schwartz, J.T.: "Linear operators" Part I., New York: Interscience 1958.
3. Neveu, J.: "Mathematical foundations of the calculus of probability", San Francisco, London, Amsterdam: Holden-Day 1965.
4. Ornstein D., Sucheston, L.: "An operator theorem on L_{1} convergence to zero with applications to Markov kernels". Ann. Math. Statist. 1970, vol. 41, no. 5, 1631-1639.
R. ZAHARAPOL

Département de Mathématiques Université Hébraīque

GIVAT-RAM
Jérusalem
Is raë1

