ANNALES SCIENTIFIQUES DE L'UNIVERSITÉ DE CLERMONT-FERRAND 2 Série Probabilités et applications

R. ZAHAROPOL

Operator theorems on L^{P} **-convergence to zero** $(1 \leq p < +\infty)$

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 78, série Probabilités et applications, nº 2 (1984), p. 15-23

http://www.numdam.org/item?id=ASCFPA_1984_78_2_15_0

© Université de Clermont-Ferrand 2, 1984, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'Université de Clermont-Ferrand 2 » implique l'accord avec les conditions générales d'utilisation (http://www. numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ OPERATOR THEOREMS ON L^p-CONVERGENCE TO ZERO $(1 \leq p < +\infty)$

R. ZAHAROPOL

1. Introduction.

Let (X, Σ, m) be a measure space (where m is a positive, σ -additive measure) and let $L^{p}(X, \Sigma, m)$, $1 \leq p \leq +\infty$ be the usual Banach spaces. A linear bounded operator T: $L^{p}(X, \Sigma, m) \rightarrow L^{p}(X, \Sigma, m)$ is called a positive contraction of $L^{p}(X, \Sigma, m)$ if it transforms non-negative functions into non-negative functions and if $||T||_{p} \leq 1$.

Our goal here is to prove that if T is simultaneously a positive contraction of $L^p(X,\Sigma,m)$ for every $1 \le p \le +\infty$ and if we consider the set $\Omega \subseteq R$,

$$\Omega = \{ \frac{1}{m(A)} \cdot \int T 1_A d m / A \in \Sigma, \quad 0 < m(A) < + \infty \}$$

then if $\inf \Omega > 0$ it follows that for every $1 \le q < +\infty \lim_{n \to +\infty} ||T^{n+1} - T^n||_q = 0$.

For notational conveniences we will recall some definitions from [1].

By a partition $E = \{E_1, \ldots, E_n\}$ of X we mean a finite partition of X such that $E_i \in \Sigma$, $i = 1, 2, \ldots, n$, $0 < m(E_1) < +\infty$ and such that only the first k sets $(1 \le k \le n)$ have finite non-zero measures. Let $1_p(k,\mu)$ $(1 \le p \le +\infty)$ be the finite dimensional L^p -space defined by $\mu_i = \mu(\{i\}) = m(E_i)$, $i = 1, 2, \ldots, k$ (that is $1_p(k,\mu) = L^p(\Gamma_k, P(\Gamma_k), \mu)$ where $\Gamma_k = \{1, 2, \ldots, k\}$ and the measure μ is generated by the real, non-zero, positive numbers $\mu_1, \mu_2, \ldots, \mu_k$). The space $1_p(k,\mu)$ will be called the finite dimensional L^p -space generated by the partition $E = \{E_1, E_2, \ldots, E_n\}$. The norm on $1_p(k,\mu)$ will be denoted by If E is a partition of X we will denote by T_E the conditional expectation operator as defined by Akcoglu [1].

2. <u>Positive Contractions of L^1 or L^{∞} -spaces.</u>

<u>Proposition 1</u>. Let T be a positive contraction of $L^{1}(X, \Sigma, m)$.

- I) The following are equivalent:
 - a) There exists $\rho > 0$ such that if $A, B \in \Sigma$, 0 < m(A), $m(B) < + \infty$, A $\cap B = \phi$ then

$$f(\mathbf{1}_{B} - \mathbf{1}_{A})\mathbf{T}\mathbf{1}_{A} d m < (1 - \rho) m(A)$$

b) There exists n > 0 such that for every partition E of X $||T_{E}T - I||_{1} < 2(1 - n)$.

II) If T satisfies a) (or b)) then $\lim_{n \to +\infty} ||T^{n+1} - T^n||_1 = 0$.

<u>Proof.</u> I) a) \Rightarrow b). Let $E = \{E_1^i, \dots, E_n\}$ be a partition of X and let $l_1(k,\mu)$ be the finite dimensional L^1 -space generated by the partition E.

The operator $T_E T$ as a positive contraction of $l_1(k,\mu)$ has the matrix $(\frac{1}{m(E_j)} \int_{E_4} T l_E d m)$. $E_4 i i, j=1,...,k$

It follows that

$$\begin{aligned} \|T_{E}T-I\|_{\overline{1}} &= \max_{\substack{1 \le i \le k}} ((m(E_{i}))^{-1} \cdot (\sum_{\substack{j=1 \ i \le j}}^{k} \frac{1}{m(E_{j})} \cdot \int_{E_{j}} T 1_{E_{i}} dm \cdot m(E_{j}) + \\ &+ (1 - \frac{1}{m(E_{i})} \int_{E_{i}} T 1_{E_{i}} dm) \cdot m(E_{i}))) &= \\ &= \max_{\substack{1 \le i \le k}} ((\int_{E_{i}} T 1_{E_{i}} dm - \int_{E_{i}} T 1_{E_{i}} dm + m(E_{i})) \cdot \frac{1}{m(E_{i})}) \\ &= \lim_{\substack{j \le i \le k}} (\int_{E_{j}} E_{j} dm - \int_{E_{i}} T 1_{E_{i}} dm + m(E_{i})) \cdot \frac{1}{m(E_{i})}) \\ &= \lim_{\substack{j \le i \le j}} \int_{j \ne i} \frac{1}{j \ne i} dm - \int_{E_{i}} T 1_{E_{i}} dm + m(E_{i}) \cdot \frac{1}{m(E_{i})}) \end{aligned}$$

Using a) we obtain that

$$\|T_{E}T-I\|_{1} < \max_{1 \le i \le k} (((1 - \rho)m(E_{i}) + m(E_{i})) \cdot \frac{1}{m(E_{i})}) = 2(1 - \frac{\rho}{2})$$

and if we note $\eta = \frac{\rho}{2}$ we obtain b).

b) \Rightarrow a). Let A, B $\in \Sigma$, 0 < m(A), m(B) < + ∞ be two disjoint sets. We define the partition E = {A,B,X \sim (AUB)}. It follows that $||T_E^{T-I}||_{\overline{1}} < 2(1 - n)$ and we obtain that

$$(1 - \frac{1}{m(A)} \int_{A} T 1_{A} dm) m(A) + \int_{B} T 1_{A} dm < 2(1 - \eta) m(A)$$

The last inequality implies that

$$f(1_B - 1_A) \cdot T 1_A dm < (1 - 2\eta)m(A)$$

and a) follows as $\rho = 2\eta$.

II) Suppose T satisfies b) and let $f \in L^1(X, \Sigma, m)$ be such that $\|f\|_1 \leq 1$. By lemma 3.1 from [1] it follows that there exists a partition E of X such that

$$\|\mathbf{f} - \mathbf{T}_{\mathbf{E}}\mathbf{f}\|_{1} < \frac{\eta}{2}$$
 and $\|\mathbf{T}\mathbf{f} - \mathbf{T}_{\mathbf{E}}\mathbf{T}\mathbf{T}_{\mathbf{E}}\mathbf{f}\|_{1} < \frac{\eta}{2}$.

It follows that

$$\| (I - T)f \|_{1} \leq \| f - T_{E}f \|_{1} + \| (I - T_{E}T)T_{E}f \|_{1} + \| T_{E}T T_{E}f - Tf \|_{1} <$$

 $< \frac{n}{2} + 2(1 - n) + \frac{n}{2} = 2(1 - \frac{n}{2})$.

We obtain that $\| I - T \|_{1} \leq 2(1 - \frac{n}{2})$ and the proof is completed by using the "zero-two" law for positive contractions in L¹-spaces. (Theorem 1.1 from [4]).

<u>Proposition 2</u>. Let T be a positive contraction of $L^{\infty}(X,\Sigma,m)$. The following are equivalent :

i) There exists $\alpha > 0$ such that if $A, B \in \Sigma$, $A \cap B = \phi$, 0 < m(A), $m(B) < + \infty$ then

$$\int_{B} T(1_A - 1_B) dm < (1 - \alpha)m(B) .$$

ii) There exists $\beta > 0$ such that for every partition E of X, $\|T_E^T - I\|_{\infty} < 2(1 - \beta)$.

<u>Proof.</u> i) \Rightarrow ii) Let E be a partition of X and let $l_{\infty}(k,\mu)$ be the finite dimensional L^{∞} -space generated by the partition E. The operator T_E^T thought as operator on $l_{\infty}(k,\mu)$ has the matrix $(\frac{1}{m(E_j)} \int_{E_j}^{f} T l_E dm)$.

It follows that

$$\|T_{E}T - I\|_{\infty} = \max \left(\sum_{\substack{i=1 \\ i \neq j}}^{k} \frac{1}{m(E_{j})} \int_{E_{j}}^{f} Tl_{E_{i}} dm + 1 - \frac{1}{m(E_{j})} \int_{E_{j}}^{f} Tl_{E_{j}} dm\right) =$$

$$= \max \left(\frac{1}{m(E_j)} \int T(\bigcup_{i=1}^{k} dm - \frac{1}{m(E_j)} \int T_{i} dm + 1\right),$$
$$\underset{j \in j}{\underline{l \leq j \leq k}} \prod_{j=1}^{k} \left(\frac{1}{m(E_j)} + \frac{1}{m(E_j)} - \frac{1}{m(E_j)} + \frac{1}{m(E_j)} - \frac{1}{m(E_j)} + \frac{1}{m(E_j)} +$$

Using i) we obtain that

$$\|T_E^T - I\|_{\infty} < \max_{1 \le j \le k} (1 - \alpha) + 1 = 2(1 - \frac{\alpha}{2}).$$

Taking $\beta = \frac{\alpha}{2}$ the assertion follows. ii) \Rightarrow i) Let A, B $\in \Sigma$ be such that A \cap B = ϕ , 0 < m(A), m(B) < + ∞ .

We will define the partition $E = \{A, B, X > (A \cup B)\}$.

Given that $\|T_{E}^{T} - I\|_{\infty} < 2(1 - \beta)$ it follows that

$$1 - \frac{1}{m(B)} \int_{B} T \, 1_{B} dm + \frac{1}{m(B)} \int_{B} T \, 1_{A} dm < 2(1 - \beta)$$

and if we note $\alpha = 2\beta$ we obtain i).

3. The Main Results

<u>Theorem 3</u>. Let T be simultaneously a positive contraction of $L^{q}(X, \Sigma, m)$ for every $1 \le q \le +\infty$. If T satisfies condition a) of Proposition 1 and condition i) of Proposition 2, then for every $1 \le p < +\infty$ $\lim_{n \to +\infty} ||T^{n+1} - T^{n}||_{p} = 0$.

<u>Proof</u>. We will assume 1 for if <math>p = 1 we obtain a special case of Proposition 1.

For every partition E of X we will note $S_E = T_E^T$. By Proposition 2 it follows that there exists $\beta > 0$ such that for every partition E of X, $||S_E - I||_{\overline{\infty}} < 2(1 - \beta)$. If $1_{\infty}(k,\mu)$ is the finite dimensional $L^{\widetilde{n}}$ -space generated by the partition E then its dual space will be $1_1(k, \mu_0)$ where μ_0 is the counting measure $(\mu_0(\{i\}) = 1, i = 1, 2, \dots, k)$. Using the proof of the "zero-two" law for positive contractions in L^1 -spaces (Theorem 1.1 from [4]) it follows that given $\varepsilon > 0$ there exists $n_1 \in N$ (which depends only on β and ε) such that for every partition E of X and for every $n \ge n_1$ $||S_E^{n+1} - S_E^n||_{\overline{\infty}} = ||S_E^{*n+1} - S_E^{*n}||_{\overline{1}} < \frac{\varepsilon}{3}$ where S_E^* is the dual operator of S_E $(S_E^*$ is a positive contraction of $1_1(k, \mu_0)$).

By Proposition 1 and the proof of Theorem 1.1 from [4] for the same $\varepsilon > 0$ there exists $n_2 \in N$ (which depends on $\frac{\rho}{2}$ and ε) such that for every partition E of X and for every $n \ge n_2 ||S_E^{n+1} - S_E^n||_1 < \frac{\varepsilon}{3}$.

By the Riesz convexity theorem (see for instance [2]) it follows that if $1 \le p \le +\infty$ and $n \ge \max\{n_1^i, n_2\}$ then for every partition E of X $\||s_E^{n+1} - s_E^n||_p < \frac{\varepsilon}{3}$.

If we put $n_0 = \max\{n_1^i, n_2\}$ then from the last inequality it follows that for every partition E of X $||S_E^{n_0+1}T_E - S_E^{n_0}T_E||_p < \frac{\varepsilon}{3}$.

Now let $f \in L^p(X, \Sigma, m)$ be such that $\|f\|_p \leq 1$. By lemma 3.1 from [1] it follows that there exists a partition E of X such that

$$\left\|\mathbf{T}^{\mathbf{n_0}+1}\mathbf{f} - \mathbf{S}_{\mathbf{E}}^{\mathbf{n_0}+1}\mathbf{T}_{\mathbf{E}}\mathbf{f}\right\|_{\mathbf{p}} < \frac{\varepsilon}{3}$$

and

$$\|\mathbf{T}^{n_0}\mathbf{f} - \mathbf{S}^{n_0}\mathbf{T}_{\mathbf{E}}\mathbf{f}\|_p < \frac{\varepsilon}{3}$$

It follows that

$$\|T^{n_0+1}f - T^{n_0}f\|_p \leq \|T^{n_0+1}f - S_E^{n_0+1}T_Ef\|_p +$$

+ $\|S_E^{n_0+1}T_Ef - S_E^{n_0}T_Ef\|_p + \|S_E^{n_0}T_Ef - T^{n_0}f\|_p < \varepsilon .$

We obtain that $\|T^{n_0+1} - T^{n_0}\|_p \le \varepsilon$ and the theorem follows as $(\|T^{n+1} - T^n\|_p)_n$ is a non-increasing sequence.

Theorem 3 has the following consequence:

<u>Corollary 4</u>. Let T be simultaneously a positive contraction of $L^{q}(X, \Sigma, m)$ for every $1 \leq q \leq +\infty$.

If there exists 0 < Y < 1 such that for every $A \in \Sigma$, $0 < m(A) < + \infty$, $\int_A T \mathbf{1}_A dm \ge \gamma m(A)$ then for every $1 \le p < + \infty$ $\lim_{n \to +\infty} ||T^{n+1} - T^n||_p = 0$.

<u>Proof</u>. It is enough to prove that T satisfies condition a) of Proposition 1 and condition i) of Proposition 2.

Let A, B $\in \Sigma$ such that 0 < m(A), $m(B) < + \infty$ and A $\cap B = \phi$. It follows that

$$f(1_B - 1_A) \cdot T 1_A dm \leq fT 1_A dm - f T 1_A dm \leq (1 - \gamma)m(A)$$

Taking $\rho = \gamma$ it follows that condition a) of Proposition 1 is satisfied.

On the other hand

$$\int_{B} T(1_{A} - 1_{B}) dm \leq \int_{B} dm - \int_{B} T 1_{B} dm \leq (1 - \gamma)m(B)$$

(we used here that T is a positive contraction of $L^{\infty}(X, \Sigma, m)$ and therefore $l_B T l_A \leq l_B$).

Taking $\alpha = \gamma$ it follows that condition i) of Proposition 2 is also satisfied.

<u>Remarks</u>. 1) The fact that the existence of $\gamma > 0$ implies the existence of $\rho > 0$ was noticed by Professor Foguel.

2) If T as a positive contraction of a finite dimensional L^{1} -space $l_{1}(k,\mu)$ is generated by the matrix $(a_{ij})_{i,j=1,...,k}$ and if $a_{ii} \neq 0$ for every i = 1,2,...,k (that is there exists $\rho > 0$ such that all the elements of the diagonal of $(a_{ij})_{i,j}$ are greater than ρ) then by the "zero-two" law for positive contractions in L^{1} -spaces (Theorem 1.1 from [4]) we obtain that $\lim_{n} ||T^{n+1} - T^{\mu}||_{1} = 0$.

If we note that $a_{ii} = \frac{1}{\mu} \int T l_{\{i\}} d\mu$ it follows that Corollary 4 can be thought of as an extension of the above observation.

References

- 1. Akcoglu, M.A.: "A pointwise ergodic theorem in L -spaces." Canadian J. of Math., Vol. XXVII, no. 5, 1975, 1075-1082.
- 2. Dunford, N., Schwartz, J.T.: "Linear operators" Part I., New York: Interscience 1958.
- 3. Neveu, J.: "Mathematical foundations of the calculus of probability", San Francisco, London, Amsterdam: Holden-Day 1965.
- Ornstein D., Sucheston, L.: "An operator theorem on L₁ convergence to zero with applications to Markov kernels". Ann. Math. Statist. 1970, vol. 41, no. 5, 1631-1639.

R. ZAHARAPOL Département de Mathématiques Université Hébraïque

GIVAT-RAM Jérusalem Israël

Reçu en Septembre 1983