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OPERATOR THEOREMS ON LP-CONVERGENCE TO ZERO (lgp<+)

R. ZAHAROPOL

1. Introduction.

Let: (X,Z,m) be a measure space (where m 1is a positive, o-additive
measure) and let Lp(X,Z,m) » 1< p< + = be the usual Banach spaces. A linear
bounded operator T: Lp(x,Z,m) -+ LP(X,Z,m) is called a positive contraétion of
LP(X,Z,m) if it transforms non-negative functions into non-negative functions and

i T <1 . ,

Our goal here is to prove that if T 1is simultaneously a positive contraction
of Lp(x,z,m) for every 1 < p < +° and if we consider the set 2 cR,

- 1 Y (-]
sz—{—m(A) i’TlAdm/AEE, 0 < m(A) < + =}

Tn+l_ n

then if inf @ >0 it follows that for every 1< q < + « lim || T “q =0,

n-r+oo

For notational conveniences we will recall some definitioms frop (11.

By a partition E = {El,...,En} of X we mean a finite partition of X
such that Ei €x, 1i=1,2,...,n, 0¢ m(El) < + @ and such that only the first
k sets (1 < k < n) have finite non-zero measures. Let lp(k,u) (L<p<+ )
be the finite dimensional Lp-space defined by uy = u({{ih) = m(Ei), i=1,2,...,k
(that is lp(k.u) = LP(P . P(Pk), u) where Fk ={1,2,...,k} and the measure
u is generated by the real, non-zero, positive numbers H» uz,...,uk). The
space 1p(k,u) will be called the f;nite dimensional Lp-space generated by

the partition E = {El, EZ""’En} . "The norm on lp(k,u) will be denoted by
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Nl

If E is a partition of X we will denote by T_ the conditional

E
expectation operator as defined by Akcoglu [1].

2. Positive Contractions of Ll or Lm-spaces.

Proposition 1. Let T be a positive contraction of Ll(X,Z,m) .

I) The following are equivalent:
a) There exists p >0 such that if A,BE€ I , 0< m(A) , u(B) <+ @,

ANB=¢ then
f(lB - lA)TlA dm< (1 - p) m(A)

b) There exists n > 0 such that for every partition E of X

[TET - Ty < 2 = n) .

II) If T satisfies a) (or b)) then lim |T°"

n

- =0.

Proof. I) a) =»b) . Let E = {E&,...,En} be a partition of X and let

ll(k,p) be the finite dimensional Ll-space generated by the partition E .

The operator TET as a positive contraction of ll(k,u) has the matrix

1
(—— S T1 d m) .
m(E,) E, By 1,§51,...,k

It follows that
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Kk
-1 1

T T-I||— = ((m(E,) . P —— T1 .

ITgT-2ly Lok ) -(j=1 m(E,) [ Tl dum(Ep)+
j#i i

1
+ 1 -——< [ T1l_ dm)m(E)))) =
m(E;) E, Ey i

1
= max (( S T1,6 dm -/ T1l, dm + m(E,)) + —)
1<izk k Ey E Ey 1 n(E;)

i
U E
j=1 3
j#i

Using a) we obtain that

1]} - R SR -
1 TeT-TI3 ¢ mex (@ - pm(E) + m(ED) * ) = 20 2

and if we note n 8% we obtain b) .

b) »a). Let A,BEZL , 0< m(A), m(B)< + » be two disjoint sets. We
definé the partition E = {A,B,X ~ (AUB)}. It follows that

T T-I|l—=< 2(1 - n) and we obtain that
E 1

(1 ;T lA dm) m(A) + S T lA dm< 2(1 - n) m(A) .

1
m(A) A B
The last inequality implies that

f(lB - lA) - T lA dm < (1 - 2n)m(A)

and a) follows as p = 2n .

II) Suppose T satisfies b) and let f ELl(X,E,m) be such that l|f||l<_l .

By lemma 3.1 from [1] it follows that there exists a partition E of X such that

n n
"f - TEf“1< -E and "Tf - TE T TEf“1< -2- .
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It follows that
| (T - T)f||1<7__ £ - TEf"l +]a - TET)TEf"T + "TET TEf - Tf||1<

n - n 2 -1
< 2-i-2(l n) +2 2(1 2) .

We obtain that || I - T[]l < 2(1 - -%) and the proof is completed by using

the "zero-two" law for positive contractions in Ll—spaces. (Theorem 1.1 from [4]).

Proposition 2. Let T be a positive contraction of LQ(X,Z‘.,m) . The following

are equivalent :

i) There exists a > 0 such that if A,BEZ, ANB=2¢, 0< m(A),

m(B) < + = then

s T(lA - ]'B) dm< (1 - a)m(B) .
B

ii) There exists B > 0 such that for every partition E of X,

ITeT - Iz 2 - 8) .

Proof. i) = ii) Let E be a partition of X and let 1_(k,u) be the finite
dimensional Lm—space generated by the partition E . The operator TET thought

as operator on lm(k,u) has the matrix (E_(%‘._)- S T lE dm) .
j Ej i i’j = l".'A’k

It follows that

k

. ' 1 1
| T,T - I||7 = max ( ——= J T1 dm+1-——— [f T1l dm) =
| TgT - Il Lope ge1 BCED :, E, w(E,) :, E,
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k

1 1
= max (——= J T(VY E,)) dm -
ek MED (1=1 2 o -m(Ey) é ’ lEj s

Using i) we obtain that

_ _ a
“TET-I“m< me.lx'(l-a)-l-l = 2(1--5)

1<i<k

Taking = 22"- the assertion follows.

ii) =» i) Let A,BE€ L be suchthat ANB=¢, 0<mA) , m(B)< = ,
We will define the partition E = {A,B,X~ (AU B)} .

Given that "TET - I|lz <21 -8) it follows that

1 1
l-m(B) leBdm-l-;-(?)- leAdm< 2(1-B)’

B B

and if we note o = 28 we obtain 1i).

3. The Main Results

Theorem 3. Let T be simultaneously a positive contraction of Lq(x,z,m)

for every 1 <q¢ +=, If T satisfies condition a) of Proposition 1 and
condition 1) of Proposition 2, then for every 1l < p< + =

7o =0
n->to

Proof. We will assume 1< p< 4+« for if p =1 we obtain a special case of

Proposition 1.
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For every partition E of X we will note SE = TET « By Proposition 2
it follows that there exists B8 > 0 such that for every partition E of X ,
”SE - I||;< 2(1-8) . If 1 (k,u) 'is the finite dimensional Lm-space
generated by the partition E then its dual space will be 11(k, uo) where uo
is the counting measure (uo({i}) = 1, 1i=1,2,,..,k) , Using the proof of
the "zero-two" law for positive contractions in Ll-spaces (Theorem 1.1 from [4])

it follows that given € > 0 there exists n, € N (which depends only on B8

1
and €) such that for every partition E of X and for every n z_nl
n+l n, *n+l *n, _ £ *
"SE - SE"°° = "SE - Sg ”1 <3 where SE is the dual operator of SE
*
(SE is a positive contraction of ll(k, uo)) .

By Proposition 1 and the proof of Theorem 1.1 from [4] for the same € > 0

there exists n, € N (which depends on £ and ¢) such that for every partition

2 2
nentl __ £
E of X and for every n > n, ”SE - Sg"l < T

By the Riesz convexity theorem (see for instance [2]) it follows that if

1<p<+> and n > max {ni, nz} then for every partition E of X

n+l €
s~ - sgl-[; <= .

If we put n, = max {ni, nz} then from the last inequality it follows that

sg"ﬂ T. - s T

. €
g~ Sp Ty <3 -

for every partition E of X |
Now let f € LP(X,X,m) be such that “f"p < 1. By lemma 3.1 from [1] it
follows that there exists a partition E of X such that

n°+1f _ Sn°+

T E

1 €
TEf"p < 3
and

Noe _ qPo £
[IT°f SE TEf“p <37



T

n+1
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It follows that

ng+1 n ny+1 n,+1
[T°f-T °f”p < |TOE - spe TEf“p +
ng+l n n n
+ SE° T - SEOTEf”p + “SEOTEf - T C’f”p < €.

We obtain that “Tn°+l - T“o”p < & and the theorem follows as

n .
- T ”p)n is a non-increasing sequence.

Theorem 3 has the following consequence:

Corollary 4. Let T be simultaneously a positive contraction of Lq(X,Z,m)

every 1l < q<¢ + =,

If there exists 0 < Y < 1 such that for every A€ L ,

0<m(A) < +=, [T 1A dm > ym(A) then for every 1< p< + =

lim
n-+ow

A

n+1l

I - 1, = 0.

for

Proof. 1t is enough to prove that T satisfies condition a) of Proposition 1

and condition i) of Proposition 2.

Let A,B € £ such that 0< m(A), m(B) < + * and ANB=¢ . It follows that

f(lB - lA)'T 1A dm < ST 1A dm - i T lA dm < (1 -v)m(A) .

Taking p = Y it follows that condition a) of Proposition 1 is

satisfied.
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On the other hand

fT(lA - 1B) dm < ledm - /T 1B dm < (1 - Y)m(B)
B B
(we used here that T 1is a positive contraction of Lm(X,Z,m) and therefore

1, T1, 1),

Taking a = Y it follows that condition 1) of Proposition 2 is also

satisfied.

Remarks. 1) The fact that the existence of Y > 0 implies the existence of

p > 0 was noticed by Professor Foguel.

2) If T as a positive contraction of a finite dimensional Ll-space

) and if ay # 0 for every

11(k,u2 is generated by the matrix (aij 1,551, ...,k

i=1,2,...,k (that is there exists p > 0 such that all the elements of the

diagonal of (aij)i j are greater than p) then by the "zero-two" law for positive
’

contractions in Ll-spaces (Theorem 1.1 from [4]) we obtain that

1im T - ™, =0 .

n

If we note that a,y = l— S T 1{17 du it follows that Corollary 4 can be

u
) i (i
thought of as an extension of the above observationm,
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