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OPERATOR THEOREMS ON LP-CONVERGENCE TO ZERO (1 ~ P  + ~)

R. ZAHAROPOL

1. Introduction.

I Let (X,Z,m) be a measure space (where m is a positive, a-additive

measure) and let 1 .- be the usual Banach spaces. A linear

bounded operator T: is called a positive contraction of

if it transforms non-negative functions into non-negative functions and

if 1 ..

Our goal here is to prove that if T is simultaneously a positive contraction

of LP(X,E,m) for every 1 ~ P ~ +0153 and if we consider the set Q c R ,

then if inf il &#x3E; 0 it follows that for every

For notational conveniences we will recall some definitions from [1].

By a partition E = of X we mean a finite partition of X

such that E 6 Es i = l,2,...,n, 0  m(El)  + 0153 and such that only the first

k sets (1  k  n) have finite non-zero measures. Let 1 (k,p) (1 ~_ P ~ ~ ~)

be the finite dimensional LP-space defined by P, p(fil) = m(E~), i ~ l,2,...,k

(that is p) where r - fl,2,...,kl and the measure
P k k k

p is generated by the real, non-zero, positive numbers pit P2’ ... gilk). The

space 1 (k,p) will be called the finite dimensional LP-space generated by

the partition E = (E , norm on 1p(k, p) will be denoted by
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If E is a partition of X we will denote by TE the conditional

expectation operator as defined by Akcoglu [1].

2. Positive Contractions of L1 or 

Proposition 1. Let T be a positive contraction of 

I) The following are equivalent:

a) There exists p &#x3E; 0 such that if A,B E E , 0  m~~)  ~ ~~

then

IT) There exists n &#x3E; 0 such that for every partition E of X

II) If T satisfies a) (or b)) then

Proof. I) a) ~b) . Let be a partition of X and let

be the finite dimensional L 1 -space generated by the partition E .

The operator TET as a positive contraction of has the matrix

It follows that
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Using a) we obtain that

and if we we obtain b) - 
.2 

 b) ~ a). Let  A,8 E E , 4  m(B) + - be two disjoint sets. We

def ine the partition E ~ (A,B,X , (AUB) }. It follows that

2 (1 - n) and we obtain that 
-

" L 1

The last inequality implies that

and a) follows as p~2n .

II) Suppose T satisfies b) and let f E be such that 

By lemma 3.1 from [1] it follows that there exists a partition E of X such that
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It follows that

We obtain that I - 2(1 - n) ~ and the proof is completed by using
the "zero-two" law for positive contractions in L l-spaces. (Theorem 1.1 from [4]).

Proposition 2. Let T be a positive contraction of The following

are equivalent : 
’

i) There exists a &#x3E; 0 such that if A fl B * , 0  m (A) ,

m (B)  + m then

ii) There exists B &#x3E; 0 such that for every partition E of X,

Proof. i) ~ ii) Let E be a partition of X and let 1. (k, P) be the finite

dimensional L"-space generated by the partition E . The operator TET thought

as operator on has the matrix 1 Ej r 
i 

dm) 
i,j. l,..,k 

.

Ej 1 

It follows that
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Using i) we obtain that

Taking 8 = a 2 the assertion follows.

ii) - i) Let A,B E E be such that A Q B = o , 0  m(A) , m(B)  + 0153 .

We will def ine the partition E = ( A, B,X ~ (A U 8) } .

Given that IITET - 2(1 - g) it f ollows that

and if we note a = 2$ we obtain i).

3. The Main Results

Theorem 3. Let T be simultaneously a positive contraction of Lq ~X, E,m)
for every 1  q  + m . If T satisfies condition a) of Proposition 1 and

condition i) of Proposition 2, then for every 1  p  + 0153

Proof . We will assume 1  p  + m f or if p = 1 we obtain a special case of

Proposition 1.
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For every partition E of X we will note TET . By Proposition 2

it follows that there exists 0 &#x3E; 0 such that for every partition E of X ,
m

2(1 - 8) . If is the finite dimensional L -space

generated by the partition E then its dual space will be 1- (k, p0) where 0
is the counting measure = 1 , i = l,2~...,k) , Using the proof of

the "zero-two" law for positive contractions in L l-spaces (Theorem 1.1 from [4])
it follows that given e &#x3E; 0 there exists n 1 E N (which depends only on 6

and c) such that for every partition E of X and for every n ~ nl
*

where SE is the dual operator of SEE &#x26;

x

(SE is a positive contraction of 11(k, 

By Proposition 1 and the proof of Theorem 1.1 from [4] for the same e &#x3E; 0

there exists n2 E N (which depends on 2 and e) such that for every partition

E of X and for every

By the Riesz convexity theorem (see for instance ~2~~ it follows that if,

1  p  -t- oo and n &#x3E; n21 then f or every partition E of X
 p  2013 1 2013 1 2 z .

If we put n 
= max f n1, n21 then from the last inequality it follows that

for every partition E of

Now let f E Lp(X,E,m) be such that )jf)[  1 . By lemma 3.1 from [1] it

follows that there exists a partition E of X such that 
°

and
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It follows that

We obtain tllat T no lip  E and the theorem follows as

(ll 
is a non-increasing sequence.

p n

Theorem 3 has the following consequence:

Corollary 4. Let T be simultaneously a positive contraction of for

every 1 ~ q ~ + 0153 0

If there exists 0  Y  1 such that f or every A E E ,

0  m (A)  + ~ , j T 1. dm 2.. Ym(A) then f or every 1 ~ P  + ~
A 

"

Proof. It is enough to prove that T satisfies condition a) of Proposition 1

and condition i) of Proposition 2.

Let A,B E E such that 0  m(A), m(B)  + 00 and A n B = ~ . It follows that

Taking p = Y it follows that condition a) of Proposition 1 is

satisfied.
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On the other hand

(we used here that T is a positive contraction of L (X,E,m) and therefore

1B T 

Taking a = Y it follows that condition i) of Proposition 2 is also

satisfied. 

Remarks. 1)’ The fact that the existence of Y &#x3E; 0 implies the existence of

p &#x3E; 0 was noticed by Professor Foguel.

2) If T as a positive contraction of a finite dimensional L1 -space

11(k,u) is generated by the matrix (a..).. 1 k and if aii 0 0 for every
1 **’ 1J H

i = 1,2,...,k (that is there exists p &#x3E; 0 such that all the elements of the

diagonal of (a .).. , are greater than p) then by the "zero-two" law for positive
ij ij 

contractions in L -spaces (Theorem 1.1 from [4]) we obtain that

If we note that a.. = 1 f T du it follows that Corollary 4 can be
{ i~ f iq

thought of as an extension of the above observation.
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