@article{ASENS_1972_4_5_2_217_0, author = {Veldkamp, F. D.}, title = {The center of the universal enveloping algebra of a {Lie} algebra in characteristic $p$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {217--240}, publisher = {Elsevier}, volume = {Ser. 4, 5}, number = {2}, year = {1972}, doi = {10.24033/asens.1225}, mrnumber = {46 #7341}, zbl = {0242.17009}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.1225/} }
TY - JOUR AU - Veldkamp, F. D. TI - The center of the universal enveloping algebra of a Lie algebra in characteristic $p$ JO - Annales scientifiques de l'École Normale Supérieure PY - 1972 SP - 217 EP - 240 VL - 5 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.24033/asens.1225/ DO - 10.24033/asens.1225 LA - en ID - ASENS_1972_4_5_2_217_0 ER -
%0 Journal Article %A Veldkamp, F. D. %T The center of the universal enveloping algebra of a Lie algebra in characteristic $p$ %J Annales scientifiques de l'École Normale Supérieure %D 1972 %P 217-240 %V 5 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.24033/asens.1225/ %R 10.24033/asens.1225 %G en %F ASENS_1972_4_5_2_217_0
Veldkamp, F. D. The center of the universal enveloping algebra of a Lie algebra in characteristic $p$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 5 (1972) no. 2, pp. 217-240. doi : 10.24033/asens.1225. http://archive.numdam.org/articles/10.24033/asens.1225/
[1] Linear algebraic groups, Benjamin, New York, 1969. | MR | Zbl
,[2] Rationality properties of linear algebraic groups, II [Tôhoku Math. J., (2), vol. 20, 1968, p. 443-497]. | MR | Zbl
and ,[3] Groupes réductifs (Publ. Math. I. H. E. S., vol. 27, 1965, p. 55-150). | Numdam | MR | Zbl
and ,[4] Groupes et algèbres de Lie, chap. 4, 5, 6, Hermann, Paris, 1968.
,[5] Certains schémas de groupes semi-simples (Séminaire Bourbaki, 1960-1961, exposé 219). | Numdam | Zbl
,[6] Linear Lie groups, Academic Press, New York, 1969. | MR | Zbl
and ,[7] Quelques résultats nouveaux de Kostant sur les groupes semi-simples (Séminaire Bourbaki, 1963-1964, exposé 260). | Numdam | Zbl
,[8] Éléments de géométrie algébrique, IV (seconde partie) (Publ. Math. I. H. E. S., vol. 24, 1965). | Numdam | Zbl
et ,[9] Modular representations of classical Lie algebras and semisimple groups (J. Algebra, vol. 19, 1971, p. 51-79). | MR | Zbl
,[10] Lie algebras, Interscience, New York, 1962. | Zbl
,[11] Lectures in abstract algebra, III, Van Nostrand, Princeton, 1964. | Zbl
,[12] The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group (Amer. J. Math., vol. 81, 1959, p. 973-1032). | MR | Zbl
,[13] Lie group representations on polynomial rings (Ibid., vol. 85, 1963, p. 327-404). | MR | Zbl
,[14] Introduction to algebraic geometry (Preliminary version), Dept. Math., Harvard University.
,[15] On representations of classical semisimple Lie algebras of characteristic p (Math. of the U. S. S. R.-Izvestija, vol. 4, 1970, p. 741-750). | MR | Zbl
,[16] Séminaire «Sophus Lie», Théorie des algèbres de Lie. Topologie des groupes de Lie, Paris, 1954-1955. | Zbl
[17] Some arithmetical results on semi-simple Lie algebras (Publ. Math. I. H. E. S., vol. 30, 1966, p. 115-141). | EuDML | Numdam | MR | Zbl
,[18] Conjugacy classes. In: A BOREL et al., Seminar on algebraic groups and related finite groups (Lecture Notes in Math., vol. 131, Springer Verlag, Berlin, etc. 1970). | MR | Zbl
and ,[19] Prime power representations of finite linear groups, II (Can. J. Math., vol. 9, 1957, p. 347-351). | MR | Zbl
,[20] Representations of algebraic groups (Nagoya Math. J., vol. 22, 1963, p. 33-56). | MR | Zbl
,[21] Regular elements of semisimple algebraic groups (Publ. Math. I. H. E. S., vol. 25, 1965, p. 49-80). | EuDML | Numdam | MR | Zbl
,[22] Lectures on Chevalley groups (Mimeographed notes, Yale University, 1967). | Zbl
,[23] Structure of certain induced representations of complex semisimple Lie algebras (Dissertation, Yale University, 1966).
,[24] The representations of Lie algebras of prime characteristic (Proc. Glasgow Math. Ass., vol. 2, 1954, p. 1-36). | MR | Zbl
,Cité par Sources :