@article{ASENS_1980_4_13_2_211_0, author = {Rego, C. J.}, title = {The compactified {Jacobian}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {211--223}, publisher = {Elsevier}, volume = {Ser. 4, 13}, number = {2}, year = {1980}, doi = {10.24033/asens.1380}, mrnumber = {81k:14006}, zbl = {0478.14024}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.1380/} }
Rego, C. J. The compactified Jacobian. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 13 (1980) no. 2, pp. 211-223. doi : 10.24033/asens.1380. http://archive.numdam.org/articles/10.24033/asens.1380/
[1] Irreducibility of the Compactified Jacobian, Singularities of Real and Complex Maps (Proceedings of the Nordic Summer School, Oslo, Vol. 76, 1977, pp. 1-12, P. Holm, Ed., Sijthoff and Noordhoff). | MR | Zbl
, and ,[2] Algebraic Systems of Linearly Equivalent Divisor-like Subschemes (Composito Math., Vol. 29, 1974, pp. 113-139). | Numdam | MR | Zbl
and ,[3] On the Ubiquity of Gorenstein Rings (Math. Zeit., Vol. 82, 1963, pp. 8-28). | MR | Zbl
,[4] Description of Hilbn ℂ {X, Y} (Inventiones Math., Vol. 41, 1977, pp. 45-89). | MR | Zbl
,[5] A Treatise on Algebraic Plane Curves, Dover Publications, 1959. | MR | Zbl
,[6] Compactification of the Generalized Jacobian, [Thesis, Bombay University, 1974 (to appear in Proc. Ind. Academy of Sciences)].
,[7] Fixed Point Schemes (Amer. J. Math., Vol. 188, 1977).
,[8] Families on an Algebraic Surface (Amer. J. Math., Vol. 90, 1968, pp. 511-521). | MR | Zbl
,[9] Fixed Point Schemes of Additive Group Actions (Topology, Vol. 8, 1969, pp. 233-242). | MR | Zbl
,[10] Punctual Hilbert Schemes (Mem. A.M.S., Vol. 188, 1977). | MR | Zbl
,[11] Further Comments on Boundary Points, Preprint, A.M.S. Summer Institute, Woods Hole, 1964.
,[12] A Note on One Dimensional Gorenstein Rings (J. Pure and Appl. Algebra, Vol. 12, 1978, pp. 111-115). | MR | Zbl
,[13] Deformation of Singular Curves (to appear).
,[14] Groupes algébriques et corps de classes, Hermann, Paris, 1959. | MR | Zbl
,Cité par Sources :