Variation of mixed Hodge structures arising from family of logarithmic deformations
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 16 (1983) no. 1, p. 91-107
@article{ASENS_1983_4_16_1_91_0,
     author = {Usui, Sampei},
     title = {Variation of mixed Hodge structures arising from family of logarithmic deformations},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Elsevier},
     volume = {Ser. 4, 16},
     number = {1},
     year = {1983},
     pages = {91-107},
     doi = {10.24033/asens.1441},
     mrnumber = {719764},
     zbl = {0516.14006},
     mrnumber = {85e:14012},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_1983_4_16_1_91_0}
}
Usui, Sampei. Variation of mixed Hodge structures arising from family of logarithmic deformations. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 16 (1983) no. 1, pp. 91-107. doi : 10.24033/asens.1441. http://www.numdam.org/item/ASENS_1983_4_16_1_91_0/

[1] F. Catanese, Surfaces with K² = pg = 1 and Their Period Mapping. (Proc. Summer Meeting on Algebraic Geometry, Copenhagen 1978, Lect. Notes in Math., No. 732, Springer Verlag, pp. 1-29). | MR 81c:14018 | Zbl 0423.14019

[2] F. Catanese, The Moduli and the Global Period Mapping of Surfaces with K² = pg = 1 : A Counterexample to the Global Torelli Problem. (Comp. Math., Vol. 41-3, 1980, pp. 401-414). | Numdam | MR 81k:14027 | Zbl 0444.14008

[3] P. Deligne, Equations différentielles à points singuliers réguliers. (Lect. Notes in Math., No. 163, 1970, Springer Verlag). | MR 54 #5232 | Zbl 0244.14004

[4] P. Deligne, Théorie de Hodge, II (Publ. Math. I.H.E.S., Vol. 40, 1971, pp. 5-58). | Numdam | MR 58 #16653a | Zbl 0219.14007

[5] P. Deligne, Travaux de Griffiths. (Sém. Bourbaki Exp., Vol. 376, 1969/1970, Lect. Notes in Math., No. 180, Springer Verlag). | Numdam | Zbl 0208.48601

[6] P. Griffiths and W. Schmid, Recent Developements in Hodge theory : A Discussion of Techniques and Results. (Proc. Internat. Coll., Bombay, Oxford Press, 1971, pp. 31-127). | Zbl 0355.14003

[7] N. M. Katz and T. Oda, On the Deformations of De Rham Cohomology Classes with Respect to Parameters. (J. Math. Kyoto Univ., Vol. 8-2, 1968, pp. 199-213). | MR 38 #5792 | Zbl 0165.54802

[8] Y. Kawamata, On Deformations of Compactified Manifolds. (Math. Ann., Vol. 235, 1978, pp. 247-265). | MR 80c:32026 | Zbl 0363.32015

[9] K. Saito, On the Uniformization of Complements of Discriminant Loci. (A.M.S. Summer Institute, 1975).

[10] A. N. Todorov, Surfaces of General Type with pg = 1 and (K, K) = 1.I. (Ann. scient. Ec. Norm. Sup., 4e sér., Vol. 13-1, 1980, pp. 1-21). | Numdam | MR 82i:14024 | Zbl 0478.14030

[11] S. Usui, Period Map of Surfaces with pg = c²1 = 1 and K Ample. (Mem. Fac. Sc. Kochi Univ. (Math.), Vol. 2, 1981, pp. 37-73). | MR 82e:14040 | Zbl 0487.14007

[12] S. Usui, Effect of Automorphisms on Variation of Hodge Structure. (J. Math. Kyoto Univ., Vol. 21-4, 1981). | MR 83h:14026 | Zbl 0497.14003

[13] S. Usui, Torelli Theorem for Surfaces with pg = c21 = 1 and K Ample and with Certain Type of Automorphism. (Comp. Math. Vol. 45-3, 1982, pp. 293-314). | Numdam | MR 84d:14021 | Zbl 0507.14028

[14] R. Godement, Topologie algébrique et théorie des faisceaux. (Publ. Inst. Math. Univ. Strasbourg, Vol. XIII, Hermann, Paris, 1958). | MR 21 #1583 | Zbl 0080.16201

[15] C. Bănică and O. Stănăcilă, Metode Algebrice in Teorica Globală a Spatiilor Complexe. (Editura Academici Republicii Socialiste Româna, Bucuresti, 1974, English Edition, John Wiley & Sons, London, New York, Sydney, Toronto, 1976).

[16] D. Lieberman, R. Wilsker and C. Peters, A Theorem of Local Torelli Type. (Math. Ann., 1977). | MR 58 #17225 | Zbl 0367.14006

[17] S. Mori, On a Generalization of Complete Intersections. (J. Math. Kyoto Univ., Vol. 15-3, 1975, pp. 619-646). | MR 52 #13865 | Zbl 0332.14019

[18] P. Griffiths, Periods of Integrals on Algebraic Manifolds I, II, III. (Amer. J. Math., Vol. 90, 1968, pp. 568-626 ; idem pp. 805-865 ; Publ. Math. I.H.E.S., Vol. 38, 1970, pp. 125-180). | Numdam | Zbl 0212.53503

[19] F. I. Kinev, A Simply Connected Surface of General Type for which the Local Torelli Theorem does not Hold. (C.R. Acad. Bulgare des Sci., Vol. 30-3, 1977, pp. 323-325 (Russian)). | MR 56 #370 | Zbl 0363.14005