Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 19 (1986) no. 3, pp. 335-382.
@article{ASENS_1986_4_19_3_335_0,
     author = {Tadi\'c, Marko},
     title = {Classification of unitary representations in irreducible representations of general linear group {(non-Archimedean} case)},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {335--382},
     publisher = {Elsevier},
     volume = {Ser. 4, 19},
     number = {3},
     year = {1986},
     doi = {10.24033/asens.1510},
     mrnumber = {88b:22021},
     zbl = {0614.22005},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.1510/}
}
TY  - JOUR
AU  - Tadić, Marko
TI  - Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1986
SP  - 335
EP  - 382
VL  - 19
IS  - 3
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.24033/asens.1510/
DO  - 10.24033/asens.1510
LA  - en
ID  - ASENS_1986_4_19_3_335_0
ER  - 
%0 Journal Article
%A Tadić, Marko
%T Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)
%J Annales scientifiques de l'École Normale Supérieure
%D 1986
%P 335-382
%V 19
%N 3
%I Elsevier
%U https://www.numdam.org/articles/10.24033/asens.1510/
%R 10.24033/asens.1510
%G en
%F ASENS_1986_4_19_3_335_0
Tadić, Marko. Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case). Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 19 (1986) no. 3, pp. 335-382. doi : 10.24033/asens.1510. https://www.numdam.org/articles/10.24033/asens.1510/

[1] J. N. Bernstein, All Reductive p-adic Groups Are Tame (Funct. Anal. Appl., Vol. 8, 1974, pp. 91-93). | MR | Zbl

[2] J. N. Bernstein, P-Invariant Distributions on GL (N) and the Classification of Unitary Representations of GL (N) (Non-Archimedean Case), in Lie Group Representations II (Proceedings, University of Maryland, 1982-1983, Lecture Notes in Math., Vol. 1041, Springer-Verlag, Berlin, 1984, pp. 50-102). | Zbl

[3] J. N. Bernstein, P. Deligne, D. Kazhdan and M. F. Vigneras, Représentations des groupes réductifs sur un corps local, Hermann, Paris, 1984. | Zbl

[4] J. N. Bernstein and A. V. Zelevinsky, Representations of the Group GL (n, F), where F Is a Local Non-Archimedean Field [Uspekhi Mat. Nauk, Vol. 31, No. 3, 1976, pp. 5-70 (= Russian Math. Surveys, Vol. 31, No. 3, 1976, pp. 1-68)]. | Zbl

[5] J. N. Bernstein and A. V. Zelevinsky, Induced Representations of Reductive p-adic Groups, I (Ann. Scient. Éc. Norm. Sup., Vol. 10, 1977, pp. 441-472). | Numdam | MR | Zbl

[6] P. Cartier, Representations of p-adic Groups : a Survey, in Proc. Sympos. Pure Math., Vol. XXXIII, part 1, Amer. Math. Soc., Providence, R. I., 1979, pp. 111-155. | MR | Zbl

[7] W. Casselman, Introduction to the Theory of Admissible Representations of p-adic Reductive Groups, preprint.

[8] G. Van Dijk, Computation of Certain Induced Characters of p-adic Groups (Math. Ann., Vol. 199, 1972, pp. 229-240). | MR | Zbl

[9] D. Flath, Decomposition of Representations into Tensor Products, in Proc. Sympos. Pure Math., Vol. XXXIII, part I, Amer. Math. Soc., Providence, R. I., 1979, pp. 179-183. | MR | Zbl

[10] I. M. Gelfand and M. I. Graev, Representations of a Group of the Second Order with Elements from a Locally Compact Field (Russian Math. Surveys, Vol. 18, 1963, pp. 29-100). | MR | Zbl

[11] I. M. Gelfand, M. Graev and I. I. Piatetski-Shapiro, Automorphic Functions and Representation Theory, W. B. Sannders Co., Philadelphia, 1969. | Zbl

[12] I. M. Gelfand and D. A. Kazhdan, Representations of GL (n, K), in Lie Groups and Their Representations, Akademiai Kiado, Budapest, 1974, pp. 95-118. | Zbl

[13] I. M. Gelfand and M. A. Neumark, Unitare Darstellungen der Klassichen Gruppen, German translation, Akademie Verlag, Berlin, 1957. | Zbl

[14] H. Jacquet, Generic Representations, in Non-Commutative Harmonic Analysis (Lecture Notes in Math., Vol. 587, Springer-Verlag, Berlin, 1977, pp. 91-101). | MR | Zbl

[15] H. Jacquet, Principal L-functions of the linear group, in Proc. Sympos. Pure Math., Vol. XXXIII, part 2, Amer. Math. Soc., Providence, R. I., 1979, pp. 63-86. | MR | Zbl

[16] H. Jacquet, On the Residual Spectrum of GL(n), in Lie Group Representations II (Proceedings, University of Maryland, 1982-1983, Lecture Notes in Math., Vol. 1041, Springer-Verlag, Berlin, 1984, pp. 185-208). | MR | Zbl

[17] A. Knapp and B. Speh, Status of Classification of Irreducible Unitary Representations, in Harmonic Analysis (Proceedings, Minneapolis, 1981, Lecture Notes in Math., Vol. 908, Springer-Verlag, Berlin, 1982). | Zbl

[18] D. Miličić, On C*-Algebras with Bounded Trace (Glasnik Mat., Vol. 8, (28), 1973, pp. 7-22). | MR | Zbl

[19] C. Moeglin and J.-L. Waldspurger, Sur l'involution de Zelevinsky, preprint, Paris, 1985.

[20] G. I. Olshansky, Intertwining Operators and Complementary Series in the Class of Representations of the General Group of Matrices Over a Locally Compact Division Algebra, Induced from Parabolic Subgroups (Mat. Sb., Vol. 93, No. 2, 1974, pp. 218-253).

[21] F. Rodier, Représentations de GL (n, k) où k est un corps p-adique [Séminaire Bourbaki, n° 587, 1982, (Astérisque, 92-93, 1982, pp. 201-218)]. | Numdam | MR | Zbl

[22] J. Rogawski, Representations of GL (n) and Division Algebras Over a p-adic Field (Duke Math. J., Vol. 50, 1983, pp. 161-196). | MR | Zbl

[23] B. Speh, The Unitary Dual of GL (3, ℝ) and GL (4, ℝ) (Math. Ann., Vol. 258, 1981, pp. 113-133). | MR | Zbl

[24] B. Speh, Unitary Representations of GL (n, ℝ) with Non-Trivial (g, K) Cohomology (Invent. Math., Vol. 71, 1983, pp. 443-465). | MR | Zbl

[25] E. M. Stein, Analysis in Matrix Spaces and Some New Representations of SL (N, ℂ) (Ann. of Math., Vol. 86, 1967, pp. 461-490). | MR | Zbl

[26] M. Tadić, The C*-algebra of SL (2, k) (Glasnik Mat., Vol. 17, (37), 1982, pp. 249-263). | MR | Zbl

[27] M. Tadić, The Topology of the Dual Space of a Reductive Group Over a Local Field (Glasnik Mat., 18, (38), 1983, pp. 259-279). | MR | Zbl

[28] M. Tadić, Proof of a Conjecture of Bernstein, (Math. Ann., Vol. 272, 1985, pp. 11-16). | MR | Zbl

[29] M. Tadić, Unitary Dual of p-Adic GL (n). Proof of Bernstein Conjectures, (Bull. Amer. Math. Soc., Vol. 13, No. 1, 1985, pp. 39-42). | MR | Zbl

[30] M. Tadić, Unitary Representations of General Linear Group Over Real and Complex Field, preprint, Bonn, 1985.

[31] D. A. Vogan, Jr., Understanding the Unitary Dual, in Lie Group Representations I (Proceedings, University of Maryland, 1982-1983, Lecture Notes in Math., Vol. 1024, Springer-Verlag, Berlin 1983, pp. 264-286). | MR | Zbl

[32] N. R. Wallach, Representations of Reductive Lie Groups, in Proc. Sympos. Pure Math., Vol. XXXIII, part 1, Amer. Math. Soc., Providence, R. I., 1979, pp. 71-86). | MR | Zbl

[33] A. V. Zelevinsky, Induced representations of reductive p-adic groups II (Ann. Scient. Éc. Norm. Sup., Vol. 13, 1980, pp. 165-210). | Numdam | MR | Zbl

[34] A. V. Zelevinsky, p-adic analogue of the Kazhdan-Lusztig conjecture (Funct. Anal. Appl., Vol. 15, 1981, pp. 83-92). | MR | Zbl

[35] J.-L. Waldspurger, Algèbres de Hecke et induites de représentations cuspidales, pour GL (N) (Journal für die Reine und angewandte Matematik, No. 370, 1986, pp. 127-191). | MR | Zbl

  • Qadri, Mohammed Saad Non-tempered Ext Branching Laws for the p-adic General Linear Group, International Mathematics Research Notices, Volume 2025 (2025) no. 1 | DOI:10.1093/imrn/rnae263
  • Boyer, Adrien; Picaud, Jean-Claude Riesz operators and some spherical representations for hyperbolic groups, Israel Journal of Mathematics (2025) | DOI:10.1007/s11856-025-2728-z
  • Representation Theory of p-Adic Reductive Groups, K-Theory and Representation Theory (2024), p. 157 | DOI:10.1017/9781009201476.005
  • Bošnjak, Barbara Representations induced from essentially Speh and strongly positive discrete series, manuscripta mathematica, Volume 173 (2024) no. 1-2, p. 591 | DOI:10.1007/s00229-023-01466-7
  • Cunningham, Clifton; Ray, Mishty Proof of Vogan’s conjecture on Arthur packets: irreducible parameters of p-adic general linear groups, manuscripta mathematica, Volume 173 (2024) no. 3-4, p. 1073 | DOI:10.1007/s00229-023-01490-7
  • Gurevich, Maxim Simple modules for quiver Hecke algebras and the Robinson–Schensted–Knuth correspondence, Journal of the London Mathematical Society, Volume 107 (2023) no. 2, p. 704 | DOI:10.1112/jlms.12695
  • Chan, Kei Yuen Ext-multiplicity theorem for standard representations of (GLn+1,GLn), Mathematische Zeitschrift, Volume 303 (2023) no. 2 | DOI:10.1007/s00209-022-03198-y
  • Zou, Jiandi Local metaplectic correspondence and applications, Mathematische Zeitschrift, Volume 305 (2023) no. 3 | DOI:10.1007/s00209-023-03368-6
  • Tadić, Marko Unitarizability in Corank Three for Classical 𝑝-adic Groups, Memoirs of the American Mathematical Society, Volume 286 (2023) no. 1421 | DOI:10.1090/memo/1421
  • Cai, Yuanqing; Friedberg, Solomon; Gourevitch, Dmitry; Kaplan, Eyal The generalized doubling method: (𝑘,𝑐) models, Proceedings of the American Mathematical Society, Volume 151 (2023) no. 7, p. 2831 | DOI:10.1090/proc/16370
  • Cai, Yuanqing; Friedberg, Solomon; Kaplan, Eyal The generalized doubling method: local theory, Geometric and Functional Analysis, Volume 32 (2022) no. 6, p. 1233 | DOI:10.1007/s00039-022-00609-4
  • Ciubotaru, Dan Weyl groups, the Dirac inequality, and isolated unitary unramified representations, Indagationes Mathematicae, Volume 33 (2022) no. 1, p. 1 | DOI:10.1016/j.indag.2021.09.004
  • Chan, Kei Yuen Restriction for general linear groups: The local non-tempered Gan–Gross–Prasad conjecture (non-Archimedean case), Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2022 (2022) no. 783, p. 49 | DOI:10.1515/crelle-2021-0066
  • Bošnjak, Barbara; Matić, Ivan Discrete series and the essentially Speh representations, Journal of Algebra, Volume 611 (2022), p. 65 | DOI:10.1016/j.jalgebra.2022.07.040
  • Yang, Chang Linear periods for unitary representations, Mathematische Zeitschrift, Volume 302 (2022) no. 4, p. 2253 | DOI:10.1007/s00209-022-03136-y
  • Atobe, Hiraku On the socles of certain parabolically induced representations of 𝑝-adic classical groups, Representation Theory of the American Mathematical Society, Volume 26 (2022) no. 18, p. 515 | DOI:10.1090/ert/612
  • Tadić, Marko On unitarizability and Arthur packets, manuscripta mathematica, Volume 169 (2022) no. 3-4, p. 327 | DOI:10.1007/s00229-021-01330-6
  • Grbac, Neven; Schwermer, Joachim Eisenstein series for rank one unitary groups and some cohomological applications, Advances in Mathematics, Volume 376 (2021), p. 107438 | DOI:10.1016/j.aim.2020.107438
  • Matić, Ivan Representations induced from the Zelevinsky segment and discrete series in the half-integral case, Forum Mathematicum, Volume 33 (2021) no. 1, p. 193 | DOI:10.1515/forum-2020-0054
  • Brajković Zorić, Darija Unitary dual of p-adic group SO(7) with support on minimal parabolic subgroup, Glasnik Matematicki, Volume 56 (2021) no. 1, p. 107 | DOI:10.3336/gm.56.1.08
  • Chan, Kei Yuen Homological branching law for (GLn+1(F),GLn(F)): projectivity and indecomposability, Inventiones mathematicae, Volume 225 (2021) no. 1, p. 299 | DOI:10.1007/s00222-021-01033-5
  • Bakić, Petar; Hanzer, Marcela Theta correspondence for p-adic dual pairs of type I, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2021 (2021) no. 776, p. 63 | DOI:10.1515/crelle-2021-0006
  • Tsuzuki, Masao Hecke-Maass cusp forms on PGL of large levels with non-vanishing L-values, Journal of Functional Analysis, Volume 281 (2021) no. 10, p. 109215 | DOI:10.1016/j.jfa.2021.109215
  • Mitra, A.; Offen, Omer ON -DISTINGUISHED REPRESENTATIONS OF THE QUASI-SPLIT UNITARY GROUPS, Journal of the Institute of Mathematics of Jussieu, Volume 20 (2021) no. 1, p. 225 | DOI:10.1017/s1474748019000161
  • Bošnjak, Barbara Representations induced from cuspidal and ladder representations of classical 𝑝-adic groups, Proceedings of the American Mathematical Society, Volume 149 (2021) no. 12, p. 5081 | DOI:10.1090/proc/15638
  • Matić, Ivan Reducibility of representations induced from the Zelevinsky segment and discrete series, manuscripta mathematica, Volume 164 (2021) no. 3-4, p. 349 | DOI:10.1007/s00229-020-01187-1
  • Mitra, Arnab; Sayag, Eitan Models of Representations and Langlands Functoriality, Canadian Journal of Mathematics, Volume 72 (2020) no. 3, p. 676 | DOI:10.4153/s0008414x19000014
  • Gan, Wee Teck; Gross, Benedict H.; Prasad, Dipendra Branching laws for classical groups: the non-tempered case, Compositio Mathematica, Volume 156 (2020) no. 11, p. 2298 | DOI:10.1112/s0010437x20007496
  • Lapid, Erez M.; Mao, Zhengyu Local Rankin–Selberg integrals for Speh representations, Compositio Mathematica, Volume 156 (2020) no. 5, p. 908 | DOI:10.1112/s0010437x2000706x
  • Lapid, Erez; Mínguez, Alberto Conjectures and results about parabolic induction of representations of GLn(F), Inventiones mathematicae, Volume 222 (2020) no. 3, p. 695 | DOI:10.1007/s00222-020-00982-7
  • Jiang, Dihua; Liu, Baiying; Xu, Bin A reciprocal branching problem for automorphic representations and global Vogan packets, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2020 (2020) no. 765, p. 249 | DOI:10.1515/crelle-2019-0016
  • Mitra, Arnab A note on degenerate Whittaker models for general linear groups, Journal of Number Theory, Volume 209 (2020), p. 212 | DOI:10.1016/j.jnt.2019.08.018
  • Offen, Omer On symplectic periods and restriction to SL(2n), Mathematische Zeitschrift, Volume 294 (2020) no. 3-4, p. 1521 | DOI:10.1007/s00209-019-02390-x
  • Smith, Jerrod Speh representations are relatively discrete, Representation Theory of the American Mathematical Society, Volume 24 (2020) no. 18, p. 525 | DOI:10.1090/ert/550
  • Mitra, Arnab On the relationship between distinction and irreducibility of parabolic induction, Comptes Rendus. Mathématique, Volume 357 (2019) no. 11-12, p. 827 | DOI:10.1016/j.crma.2019.10.009
  • Golubev, Konstantin; Parzanchevski, Ori Spectrum and combinatorics of two-dimensional Ramanujan complexes, Israel Journal of Mathematics, Volume 230 (2019) no. 2, p. 583 | DOI:10.1007/s11856-019-1828-z
  • Offen, Omer; Sayag, Eitan Klyachko periods for Zelevinsky modules, The Ramanujan Journal, Volume 49 (2019) no. 3, p. 545 | DOI:10.1007/s11139-018-0040-9
  • Gurevich, Maxim; Ma, Jia-Jun; Mitra, Arnab On two questions concerning representations distinguished by the Galois involution, Forum Mathematicum, Volume 30 (2018) no. 1, p. 141 | DOI:10.1515/forum-2016-0212
  • Tadić, Marko On Unitarizability in the Case of Classical p-Adic Groups, Geometric Aspects of the Trace Formula (2018), p. 405 | DOI:10.1007/978-3-319-94833-1_13
  • Xu, Bin L-packets of quasisplit GSp(2n) and GO(2n), Mathematische Annalen, Volume 370 (2018) no. 1-2, p. 71 | DOI:10.1007/s00208-016-1515-x
  • Offen, Omer Period Integrals of Automorphic Forms and Local Distinction, Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms, Volume 2221 (2018), p. 159 | DOI:10.1007/978-3-319-95231-4_3
  • Badulescu, A. I. The Trace Formula and the Proof of the Global Jacquet-Langlands Correspondence, Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms, Volume 2221 (2018), p. 197 | DOI:10.1007/978-3-319-95231-4_4
  • Xu, Bin On Mœglin's Parametrization of Arthur Packets for p-adic Quasisplit Sp(N) and SO(N), Canadian Journal of Mathematics, Volume 69 (2017) no. 4, p. 890 | DOI:10.4153/cjm-2016-029-3
  • Kaplan, Eyal; Yamana, Shunsuke Twisted symmetric square L-functions for GLn GL n   and invariant trilinear forms, Mathematische Zeitschrift, Volume 285 (2017) no. 3-4, p. 739 | DOI:10.1007/s00209-016-1726-6
  • Xu, Bin On the cuspidal support of discrete series for p-adic quasisplit Sp(N) and SO(N), manuscripta mathematica, Volume 154 (2017) no. 3-4, p. 441 | DOI:10.1007/s00229-017-0923-x
  • Bergeron, Nicolas; Millson, John; Moeglin, Colette The Hodge conjecture and arithmetic quotients of complex balls, Acta Mathematica, Volume 216 (2016) no. 1, p. 1 | DOI:10.1007/s11511-016-0136-2
  • Booker, Andrew R.; Krishnamurthy, M. A converse theorem for GL(n), Advances in Mathematics, Volume 296 (2016), p. 154 | DOI:10.1016/j.aim.2016.03.041
  • Badulescu, Alexandru Ioan; Roche, Philippe Global Jacquet-Langlands Correspondence for Division Algebras in Characteristic p, International Mathematics Research Notices (2016), p. rnw094 | DOI:10.1093/imrn/rnw094
  • Kang, Ming-Hsuan Riemann Hypothesis and strongly Ramanujan complexes from GL, Journal of Number Theory, Volume 161 (2016), p. 281 | DOI:10.1016/j.jnt.2015.09.002
  • Jiang, Dihua; Liu, Baiying On Fourier coefficients of certain residual representations of symplectic groups, Pacific Journal of Mathematics, Volume 281 (2016) no. 2, p. 421 | DOI:10.2140/pjm.2016.281.421
  • Lapid, Erez; Mínguez, Alberto On parabolic induction on inner forms of the general linear group over a non-archimedean local field, Selecta Mathematica, Volume 22 (2016) no. 4, p. 2347 | DOI:10.1007/s00029-016-0281-7
  • Heiermann, Volker; Kim, Yeansu On the generic local Langlands correspondence for 𝐺𝑆𝑝𝑖𝑛 groups, Transactions of the American Mathematical Society, Volume 369 (2016) no. 6, p. 4275 | DOI:10.1090/tran/6791
  • Lapid, Erez; Mao, Zhengyu Model Transition for Representations of Metaplectic Type, International Mathematics Research Notices, Volume 2015 (2015) no. 19, p. 9486 | DOI:10.1093/imrn/rnu225
  • Yamana, Shunsuke Periods of residual automorphic forms, Journal of Functional Analysis, Volume 268 (2015) no. 5, p. 1078 | DOI:10.1016/j.jfa.2014.11.009
  • Gurevich, Maxim On a local conjecture of Jacquet, ladder representations and standard modules, Mathematische Zeitschrift, Volume 281 (2015) no. 3-4, p. 1111 | DOI:10.1007/s00209-015-1522-8
  • Grbac, Neven; Shahidi, Freydoon Endoscopic transfer for unitary groups and holomorphy of AsaiL-functions, Pacific Journal of Mathematics, Volume 276 (2015) no. 1, p. 185 | DOI:10.2140/pjm.2015.276.185
  • Mitra, Arnab On representations ofGL2n(F) with a symplectic period, Pacific Journal of Mathematics, Volume 268 (2014) no. 2, p. 435 | DOI:10.2140/pjm.2014.268.435
  • Matringe, Nadir Unitary representations of GL(n,K) distinguished by a Galois involution for ap-adic fieldK, Pacific Journal of Mathematics, Volume 271 (2014) no. 2, p. 445 | DOI:10.2140/pjm.2014.271.445
  • Barbasch, Dan; Ciubotaru, Dan Unitary Hecke algebra modules with nonzero Dirac cohomology, Symmetry: Representation Theory and Its Applications, Volume 257 (2014), p. 1 | DOI:10.1007/978-1-4939-1590-3_1
  • Clozel, Laurent Purity Reigns Supreme, International Mathematics Research Notices, Volume 2013 (2013) no. 2, p. 328 | DOI:10.1093/imrn/rnr241
  • Venketasubramanian, C. G. On representations of GL(n) distinguished by GL(n − 1) over a p-adic field, Israel Journal of Mathematics, Volume 194 (2013) no. 1, p. 1 | DOI:10.1007/s11856-012-0152-7
  • Gourevitch, Dmitry; Sahi, Siddhartha Annihilator varieties, adduced representations, Whittaker functionals, and rank for unitary representations of GL(n), Selecta Mathematica, Volume 19 (2013) no. 1, p. 141 | DOI:10.1007/s00029-012-0100-8
  • Kret, Arno; Lapid, Erez Jacquet modules of ladder representations, Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, p. 937 | DOI:10.1016/j.crma.2012.10.014
  • Caraiani, Ana Local-global compatibility and the action of monodromy on nearby cycles, Duke Mathematical Journal, Volume 161 (2012) no. 12 | DOI:10.1215/00127094-1723706
  • Qiu, Yannan Generalized Formal Degree, International Mathematics Research Notices, Volume 2012 (2012) no. 2, p. 239 | DOI:10.1093/imrn/rnr015
  • Ginzburg, David; Jiang, Dihua; Soudry, David On correspondences between certain automorphic forms on Sp4n(A) and Sp~2n(A), Israel Journal of Mathematics, Volume 192 (2012) no. 2, p. 951 | DOI:10.1007/s11856-012-0058-4
  • Gourevitch, Dmitry; Offen, Omer; Sahi, Siddhartha; Sayag, Eitan Existence of Klyachko models for GL(n,R) and GL(n,C), Journal of Functional Analysis, Volume 262 (2012) no. 8, p. 3585 | DOI:10.1016/j.jfa.2012.01.023
  • Feigon, Brooke; Lapid, Erez; Offen, Omer On representations distinguished by unitary groups, Publications mathématiques de l'IHÉS, Volume 115 (2012) no. 1, p. 185 | DOI:10.1007/s10240-012-0040-z
  • Grbac, Neven On the residual spectrum of split classical groups supported in the Siegel maximal parabolic subgroup, Monatshefte für Mathematik, Volume 163 (2011) no. 3, p. 301 | DOI:10.1007/s00605-010-0215-y
  • Badulescu, A. I.; Renard, D. Unitary dual ofGL(n) at archimedean places and global Jacquet–Langlands correspondence, Compositio Mathematica, Volume 146 (2010) no. 5, p. 1115 | DOI:10.1112/s0010437x10004707
  • Kang, Ming-Hsuan; Li, Wen-Ching Winnie; Wang, Chian-Jen The zeta functions of complexes from PGL(3): A representation-theoretic approach, Israel Journal of Mathematics, Volume 177 (2010) no. 1, p. 335 | DOI:10.1007/s11856-010-0049-2
  • Henniart, Guy Induction automorphe pour GL(n,C), Journal of Functional Analysis, Volume 258 (2010) no. 9, p. 3082 | DOI:10.1016/j.jfa.2009.12.013
  • Barbasch, Dan The unitary spherical spectrum for split classical groups, Journal of the Institute of Mathematics of Jussieu, Volume 9 (2010) no. 2, p. 265 | DOI:10.1017/s1474748009000231
  • Hanzer, Marcela; Tadić, Marko A method of proving non-unitarity of representations of p-adic groups I, Mathematische Zeitschrift, Volume 265 (2010) no. 4, p. 799 | DOI:10.1007/s00209-009-0542-7
  • Hanzer, Marcela; Matić, Ivan The unitary dual ofp-adic Sp(2), Pacific Journal of Mathematics, Volume 248 (2010) no. 1, p. 107 | DOI:10.2140/pjm.2010.248.107
  • Barbasch, Dan; Ciubotaru, Dan Whittaker unitary dual of affine graded Hecke algebras of type E, Compositio Mathematica, Volume 145 (2009) no. 6, p. 1563 | DOI:10.1112/s0010437x09004230
  • Sécherre, Vincent Proof of the Tadić conjecture (U0) on the unitary dual of GL m (D), Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2009 (2009) no. 626 | DOI:10.1515/crelle.2009.007
  • Offen, Omer; Sayag, Eitan The 𝑆𝐿(2)-type and base change, Representation Theory of the American Mathematical Society, Volume 13 (2009) no. 11, p. 228 | DOI:10.1090/s1088-4165-09-00353-7
  • Badulescu, Alexandru Ioan Global Jacquet–Langlands correspondence, multiplicity one and classification of automorphic representations, Inventiones mathematicae, Volume 172 (2008) no. 2, p. 383 | DOI:10.1007/s00222-007-0104-8
  • Kim, Henry H. Langlands–Shahidi method and poles of automorphic L-functions III: Exceptional groups, Journal of Number Theory, Volume 128 (2008) no. 2, p. 354 | DOI:10.1016/j.jnt.2007.06.012
  • Ban, Dubravka; Jantzen, Chris Jacquet modules and the Langlands classification, Michigan Mathematical Journal, Volume 56 (2008) no. 3 | DOI:10.1307/mmj/1231770365
  • Chenevier, Gaëtan; Renard, David Characters of Speh representations and Lewis Caroll identity, Representation Theory of the American Mathematical Society, Volume 12 (2008) no. 18, p. 447 | DOI:10.1090/s1088-4165-08-00339-7
  • Ciubotaru, Dan On unitary unipotent representations of 𝑝-adic groups and affine Hecke algebras with unequal parameters, Representation Theory of the American Mathematical Society, Volume 12 (2008) no. 19, p. 453 | DOI:10.1090/s1088-4165-08-00338-5
  • Muić, Goran On Certain Classes of Unitary Representations for Split Classical Groups, Canadian Journal of Mathematics, Volume 59 (2007) no. 1, p. 148 | DOI:10.4153/cjm-2007-007-0
  • Offen, Omer; Sayag, Eitan Global Mixed Periods and Local Klyachko Models for the General Linear Group, International Mathematics Research Notices, Volume 2007 (2007) | DOI:10.1093/imrn/rnm136
  • Offen, Omer; Sayag, Eitan On unitary representations of GL2n distinguished by the symplectic group, Journal of Number Theory, Volume 125 (2007) no. 2, p. 344 | DOI:10.1016/j.jnt.2006.10.018
  • Offen, Omer Residual spectrum of GL2n distinguished by the symplectic group, Duke Mathematical Journal, Volume 134 (2006) no. 2 | DOI:10.1215/s0012-7094-06-13423-3
  • Boyallian, Carina; Wedhorn, Torsten On the signature character of representations of p-adic general linear groups, Journal of Functional Analysis, Volume 239 (2006) no. 2, p. 375 | DOI:10.1016/j.jfa.2006.05.018
  • Blasius, Don Hilbert modular forms and the Ramanujan conjecture, Noncommutative Geometry and Number Theory (2006), p. 35 | DOI:10.1007/978-3-8348-0352-8_2
  • Tadić, Marko Representation theory of GL(n) over a p-adic division algebra and unitarity in the Jacquet–Langlands correspondence, Pacific Journal of Mathematics, Volume 223 (2006) no. 1, p. 167 | DOI:10.2140/pjm.2006.223.167
  • Ciubotaru, Dan Unitary ℐ-spherical representations for split 𝓅-adic 𝐄₆, Representation Theory of the American Mathematical Society, Volume 10 (2006) no. 17, p. 435 | DOI:10.1090/s1088-4165-06-00301-3
  • Ciubotaru, Dan The unitary 𝕀–spherical dual for split 𝕡–adic groups of type 𝔽₄, Representation Theory of the American Mathematical Society, Volume 9 (2005) no. 4, p. 94 | DOI:10.1090/s1088-4165-05-00206-2
  • Venkatesh, Akshay The Burger-Sarnak method and operations on the unitary dual of 𝐺𝐿(𝑛), Representation Theory of the American Mathematical Society, Volume 9 (2005) no. 8, p. 268 | DOI:10.1090/s1088-4165-05-00226-8
  • Неретин, Юрий Александрович; Neretin, Yurii Aleksandrovich Бета-функция ансамбля Брюа - Титса и деформация пространства l2 на множестве p-адических решеток, Математический сборник, Volume 194 (2003) no. 12, p. 31 | DOI:10.4213/sm786
  • Kim, Henry Functoriality for the exterior square of 𝐺𝐿₄ and the symmetric fourth of 𝐺𝐿₂, Journal of the American Mathematical Society, Volume 16 (2002) no. 1, p. 139 | DOI:10.1090/s0894-0347-02-00410-1
  • Kim, Henry H. Langlands-shahidi method and poles of automorphicL-functions II, Israel Journal of Mathematics, Volume 117 (2000) no. 1, p. 261 | DOI:10.1007/bf02773573
  • Kim, Henry H. Langlands-Shahidi Method and Poles of Automorphic L-Functions: Application to Exterior Square L-Functions, Canadian Journal of Mathematics, Volume 51 (1999) no. 4, p. 835 | DOI:10.4153/cjm-1999-036-0
  • Barbasch, Dan The Spherical Dual for p-adic Groups, Geometry and Representation Theory of Real and p-adic groups, Volume 158 (1998), p. 1 | DOI:10.1007/978-1-4612-4162-1_1
  • Tadić, Marko On reducibility of parabolic induction, Israel Journal of Mathematics, Volume 107 (1998) no. 1, p. 29 | DOI:10.1007/bf02764004
  • Žampera, Siniša The residual spectrum of the group of type G2, Journal de Mathématiques Pures et Appliquées, Volume 76 (1997) no. 9, p. 805 | DOI:10.1016/s0021-7824(97)89971-0
  • Zhang, Yuanli The holomorphy and nonvanishing of normalized local intertwining operators, Pacific Journal of Mathematics, Volume 180 (1997) no. 2, p. 385 | DOI:10.2140/pjm.1997.180.385
  • Barbasch, Dan; Moy, Allen Unitary spherical spectrum for p-adic classical groups, Acta Applicandae Mathematicae, Volume 44 (1996) no. 1-2, p. 3 | DOI:10.1007/bf00116514
  • Tadić, M. On characters of irreducible unitary representations of general linear groups, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Volume 65 (1995) no. 1, p. 341 | DOI:10.1007/bf02953339
  • Tadić, Marko An external approach to unitary representations, Bulletin of the American Mathematical Society, Volume 28 (1993) no. 2, p. 215 | DOI:10.1090/s0273-0979-1993-00372-0

Cité par 104 documents. Sources : Crossref