@article{ASENS_1986_4_19_3_383_0, author = {Rees, Mary}, title = {Positive measure sets of ergodic rational maps}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {383--407}, publisher = {Elsevier}, volume = {Ser. 4, 19}, number = {3}, year = {1986}, doi = {10.24033/asens.1511}, mrnumber = {88g:58100}, zbl = {0611.58038}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.1511/} }
TY - JOUR AU - Rees, Mary TI - Positive measure sets of ergodic rational maps JO - Annales scientifiques de l'École Normale Supérieure PY - 1986 SP - 383 EP - 407 VL - 19 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.24033/asens.1511/ DO - 10.24033/asens.1511 LA - en ID - ASENS_1986_4_19_3_383_0 ER -
Rees, Mary. Positive measure sets of ergodic rational maps. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 19 (1986) no. 3, pp. 383-407. doi : 10.24033/asens.1511. http://archive.numdam.org/articles/10.24033/asens.1511/
[B-C] On Iterations of l-ax2 on (-1, 1), Institut Mittag-Leffler, Report No. 3, 1983.
and ,[B] Invariant Sets Under Iteration of Rational Functions, (Arkiv for Mathmatik, Vol. 6, 1965, pp. 103-144). | MR | Zbl
,[D] Univalent Functions, New York, Springer, 1983. | MR | Zbl
,[F] Sur les équations fonctionnelles (Bull. Soc. Math. Fr., Vol. 47, 1919, pp. 161-271 and Vol. 48, 1920, pp. 33-94 and pp. 208-314). | JFM | Numdam
,[H 1] Construction d'un difféomorphisme minimal d'entropie topologique non nulle (Erg. Theory and Dynam. Syst., Vol. 1, 1981, pp. 65-76). | MR | Zbl
,[H 2] Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2 (to appear).
,[J] Absolutely Continuous Invariant Measures for One-Parameter Families of One-Dimensional Maps (Comm. in Math. Phys., Vol. 81, 1981, pp. 39-88). | MR | Zbl
,[M-S-S] On the Dynamics of Rational Maps (Ann. Éc. Norm. Sup., Vol. 16, 1983, pp. 193-217). | Numdam | MR | Zbl
, and ,[R] Ergodic Rational Maps with Dense Critical Point Forward Orbit (Erg. Theory and Dynam. Syst., Vol. 4, 1984, pp. 311-322). | MR | Zbl
,[S 1] Conformal Dynamical Systems, Geometric Dynamics, (Lecture Notes in Math., No. 1007, 1981, pp. 725-752). | MR | Zbl
,[S 2] Quasi-Conformal Homeomorphisms and Dynamics I (to appear).
,[SZ] Some Dynamical Properties of Certain Differentiable Mappings of an Interval (Bol. Soc. Mat. Mex., Vol. 24, No. 2, 1979, pp. 57-82). | MR | Zbl
,Cited by Sources: