@article{ASENS_1987_4_20_2_251_0, author = {Ghys, \'Etienne}, title = {Flots {d'Anosov} dont les feuilletages stables sont diff\'erentiables}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {251--270}, publisher = {Elsevier}, volume = {4e s{\'e}rie, 20}, number = {2}, year = {1987}, doi = {10.24033/asens.1532}, mrnumber = {89h:58153}, zbl = {0663.58025}, language = {fr}, url = {http://archive.numdam.org/articles/10.24033/asens.1532/} }
TY - JOUR AU - Ghys, Étienne TI - Flots d'Anosov dont les feuilletages stables sont différentiables JO - Annales scientifiques de l'École Normale Supérieure PY - 1987 SP - 251 EP - 270 VL - 20 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.24033/asens.1532/ DO - 10.24033/asens.1532 LA - fr ID - ASENS_1987_4_20_2_251_0 ER -
%0 Journal Article %A Ghys, Étienne %T Flots d'Anosov dont les feuilletages stables sont différentiables %J Annales scientifiques de l'École Normale Supérieure %D 1987 %P 251-270 %V 20 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.24033/asens.1532/ %R 10.24033/asens.1532 %G fr %F ASENS_1987_4_20_2_251_0
Ghys, Étienne. Flots d'Anosov dont les feuilletages stables sont différentiables. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 20 (1987) no. 2, pp. 251-270. doi : 10.24033/asens.1532. http://archive.numdam.org/articles/10.24033/asens.1532/
[An] Geodesic Flows on Compact Riemannian Manifolds of Negative Curvature (Proc. Steklov. Math. Inst. A.M.S. Translations, 1969).
,[Ar] Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, Moscou, 1980. | MR | Zbl
,[B] Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Math., n° 470, 1975, Springer). | MR | Zbl
,[BK] Manifolds with Non Positive Curvature (Ergod. and Dynam. Syst., vol. 5, 1985, p. 307-317). | Zbl
et , en collaboration avec , , et ,[FO] Semirigidity of Horocycle Flows Over Compact Surfaces of Variable Negative Curvature, preprint.
et ,[F] Transitive Anosov Flows and Pseudo-Anosov Maps (Topology, vol. 22, n° 3, 1983, p. 299-303). | MR | Zbl
,[G] Flots d'Anosov sur les 3-variétés fibrés en cercle [Ergod. Th. and Dynam. Sys., (4), 1984, p. 67-80]. | MR | Zbl
,[Go] Dehn Surgery on Anosov Flows, Geometric Dynamics (Lecture Notes in Math., Springer, n° 1007, p. 300-307). | MR | Zbl
,[HA] Groupoïdes d'holonomie et classifiants (Astérisque, vol. 116, 1984, p. 70-97). | Numdam | MR | Zbl
,[H-T] Anosov Flows on New 3-Manifolds (Inv. Math., vol. 59, 1980, p. 95-103). | MR | Zbl
et ,[He] 3-Manifolds (Annals of Mathematics Studies, n° 86, Princeton University Press, 1976). | MR | Zbl
,[HPS] Invariant Manifolds (Lecture Notes in Math., n° 583, 1977, Springer). | MR | Zbl
, et ,[HK] Differentiability, Rigidity and Godbillon-Vey Classes for Anosov Flows, Preprint.
et ,[M] A Relation Between the Topological Invariance of the Godbillon-Vey Class and the Differentiability of Anosov Foliations (Advanced Studies in Pure Math., vol. 5, 1985). | MR | Zbl
,[O] Seifert Manifolds (Lecture Notes in Math., n° 291, Springer-Verlag, 1972). | MR | Zbl
,[P] Anosov Flows, Transversely Affine Foliations and a Conjecture of Verjovsky [J. London. Math. Soc., (2), 23, 1981, n° 2, p. 359-362]. | MR | Zbl
,[RV] 3-Manifolds Whose Universal Coverings Are Lie Groups (Topology and its Applications, vol. 12, 1981, p. 161-179). | MR | Zbl
et ,[T] The Geometry and Topology of 3-Manifolds, chap. 4 and 5, Princeton Lectures Notes.
,Cité par Sources :