Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 23 (1990) no. 2, pp. 193-228.
@article{ASENS_1990_4_23_2_193_0,
     author = {Clozel, Laurent and Delorme, Patrick},
     title = {Le th\'eor\`eme de {Paley-Wiener} invariant pour les groupes de {Lie} r\'eductifs. {II}},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {193--228},
     publisher = {Elsevier},
     volume = {4e s{\'e}rie, 23},
     number = {2},
     year = {1990},
     doi = {10.24033/asens.1602},
     mrnumber = {91g:22013},
     zbl = {0724.22012},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.24033/asens.1602/}
}
TY  - JOUR
AU  - Clozel, Laurent
AU  - Delorme, Patrick
TI  - Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1990
SP  - 193
EP  - 228
VL  - 23
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.24033/asens.1602/
DO  - 10.24033/asens.1602
LA  - fr
ID  - ASENS_1990_4_23_2_193_0
ER  - 
%0 Journal Article
%A Clozel, Laurent
%A Delorme, Patrick
%T Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II
%J Annales scientifiques de l'École Normale Supérieure
%D 1990
%P 193-228
%V 23
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.24033/asens.1602/
%R 10.24033/asens.1602
%G fr
%F ASENS_1990_4_23_2_193_0
Clozel, Laurent; Delorme, Patrick. Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 23 (1990) no. 2, pp. 193-228. doi : 10.24033/asens.1602. http://archive.numdam.org/articles/10.24033/asens.1602/

[1] J. Arthur, The Trace Formula in Invariant Form (Ann. Math., vol. 114, 1981, p. 1-74). | MR | Zbl

[2] M. Atiyah et W. Schmid, A Geometric Construction of the Discrete Series for Semi-simple Lie Groups (Inv. Math., 42, 1977, p. 1-62). | MR | Zbl

[3] D. Barbasch et H. Moscovici, L2-Index and the Selberg trace Formula (J. Funct. Anal., vol. 53, (2), 1983, p. 151-201). | MR | Zbl

[4] J. Bernstein, P. Deligne et D. Kazhdan, Trace Paley-Wiener Theorem for Reductive p-adic groups (J. Anal. Math., vol. 47, 1986, p. 180-192). | MR | Zbl

[5] A. Borel et N. Wallach, Continuous Cohomology, Discrete Subgroups and Representations of Reductive Groups, Princeton Univ. Press, 1980. | MR | Zbl

[6] L. Clozel, On Limit Multiplicities of Discrete Series Representations in Spaces of Automorphic Forms (Inv. Math., vol. 83, 1986, p. 265-284). | MR | Zbl

[7] L. Clozel et P. Delorme, Le Théorème de Paley-Wiener invariant pour les groupes de Lie réductifs (Inv. Math., vol. 77, 1984, p. 427-453). | MR | Zbl

[8] M. Cowling, On the Paley-Wiener theorem (Inv. Math., vol. 83, 1986, p. 403-404). | MR | Zbl

[9] P. Delorme, Homomorphismes de Harish-Chandra liés aux K-types minimaux des séries principales généralisées des groupes réductifs réels connexes (Ann. Sci. Ec. Norm. Sup., vol. 17, 1984, p. 117-156). | Numdam | MR | Zbl

[10] J. Dixmier, Algèbres enveloppantes, Cahiers scientifiques, t. XXXVII, Gauthier-Villars, Paris, 1974. | MR | Zbl

[11] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Wiley-Interscience Publishers, 1970. | MR | Zbl

[12] S. Helgason, Fundamental Solutions of Invariant Differential Operators on Symmetric Spaces (Am. J. Math., vol. 86, 1964, p. 565-601). | MR | Zbl

[13] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978. | MR | Zbl

[14] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, 1972. | MR | Zbl

[15] A. Knapp, Commutativity of Intertwining Operators for Semi-simple Groups, (Compositio Math., vol. 46, 1982, p. 33-84). | Numdam | MR | Zbl

[16] A. Knapp et E. Stein, Intertwining Operators for Semi-simple Groups II (Inv. Math., vol. 60, 1980, p. 9-84). | MR | Zbl

[17] A. Knapp et G. Zuckerman, Classification of Irreducible Tempred Representations of Semi-simple Groups (Ann. Math., vol. 116, 1982, p. 389-501). | MR | Zbl

[18] R. P. Langlands, On the Functional Equations Satisfied by Eisenstein Series (Springer Lect. Notes, vol. 544, 1976). | MR | Zbl

[19] R. P. Langlands, On the Classification of Irreducible Representations of Real Algebraic Groups [Notes, I.A.S. (Princeton), 1973].

[20] R. Parthasarathy, Dirac Operators and the Discrete Series (Ann. Math., vol. 93, 1972, p. 1-42). | MR | Zbl

[21] M. Raïs, Groupes linéaires compacts et fonctions C∞ covariantes (Bull. Sci. Math., vol. 107, 1983, p. 93-111). | MR | Zbl

[22] P. C. Trombi, The tempered spectrum of a real semi-simple Lie group (Am. J. Math., vol. 99, 1977, p. 57-75). | MR | Zbl

[23] P. C. Trombi, Invariant harmonic analysis on split rank one groups with applications (Pac. J. Math., vol. 101, 1982, p. 223-246). | MR | Zbl

[24] D. Vogan, The Algebraic Structure of the Representations of Semi-simple Lie Groups I (Ann. Math., vol. 109, 1979, p. 1-60). | MR | Zbl

[25] D. Vogan, The Algebraic Structure of the Representations of Semi-simple Lie Groups II, notes non publiées.

[26] D. Vogan, Representations of Real Reductive Lie Groups, Birkhaüser, 1981. | MR | Zbl

[27] D. Vogan et G. Zuckerman, Unitary Representations with Non-zero Cohomology (Compositio Math., vol. 53, 1984, p. 51-90). | Numdam | MR | Zbl

[28] L. Clozel et P. Delorme, Sur le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs réels (C. R. Acad. Sci. Paris, t. 300, série I, n° 11, 1985, p. 331-333). | MR | Zbl

[29] L. Clozel et P. Delorme, Pseudo-coefficients et cohomologie des groupes réductifs réels (C. R. Acad. Sci. Paris, t. 300, série I, n° 12, 1985, p. 385-387). | MR | Zbl

[30] Harish-Chandra, Harmonic Analysis on real reductive group III (Ann. Math., vol. 104, 1976, p. 117-201). | MR | Zbl

[31] A. Knapp et G. Zuckerman, Normalizing Factors, Tempered Representations, and L-groups (Proc. Symp. Pure Math., vol. 33, n° I, 1979, p. 93-105). | MR | Zbl

[32] R. P. Langlands, Notes on the Knapp-Zuckerman theory, Institute for Advanced Study, Princeton, 1976.

[33] D. Shelstad, L-Indistinguishability for Real Groups (Math. Ann., vol. 259, 1982, p. 385-430). | MR | Zbl

[34] D. Shelstad, Orbital integrals, Endoscopic groups and L-Indistinguishability for Real Groups, in Journées Automorphes, Publ. Math., Univ. Paris-VII, Paris, p. 135-219 (s.d.). | MR | Zbl

Cited by Sources: