The binary additive divisor problem
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 27 (1994) no. 5, pp. 529-572.
@article{ASENS_1994_4_27_5_529_0,
     author = {Motohashi, Yoichi},
     title = {The binary additive divisor problem},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {529--572},
     publisher = {Elsevier},
     volume = {Ser. 4, 27},
     number = {5},
     year = {1994},
     doi = {10.24033/asens.1700},
     mrnumber = {95i:11104},
     zbl = {0819.11038},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.1700/}
}
TY  - JOUR
AU  - Motohashi, Yoichi
TI  - The binary additive divisor problem
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1994
SP  - 529
EP  - 572
VL  - 27
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.24033/asens.1700/
DO  - 10.24033/asens.1700
LA  - en
ID  - ASENS_1994_4_27_5_529_0
ER  - 
%0 Journal Article
%A Motohashi, Yoichi
%T The binary additive divisor problem
%J Annales scientifiques de l'École Normale Supérieure
%D 1994
%P 529-572
%V 27
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.24033/asens.1700/
%R 10.24033/asens.1700
%G en
%F ASENS_1994_4_27_5_529_0
Motohashi, Yoichi. The binary additive divisor problem. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 27 (1994) no. 5, pp. 529-572. doi : 10.24033/asens.1700. https://www.numdam.org/articles/10.24033/asens.1700/

[1] F.V. Atkinson, The Mean Value of the Zeta-function on the Critical Line (Proc. London Math. Soc., Vol. 47, 1941, pp. 174-200). | JFM | MR | Zbl

[2] F.V. Atkinson, The Mean Value of the Riemann Zeta-function (Acta Math., Vol. 81, 1949, pp. 353-376). | MR | Zbl

[3] P. Deligne, La Conjecture de Weil (Publ. Math. I.H.E.S., Vol. 43, 1974, pp. 273-307). | Numdam | MR | Zbl

[4] J.-M. Deshouillers, Sur quelques moyennes des coefficients de Fourier de formes modulaires (Lect. Notes in Math., Springer, Vol. 1068, 1984, pp. 74-79). | MR | Zbl

[5] J.-M. Deshouillers and H. Iwaniec, An Additive Divisor Problem (J. London. Math. Soc., Vol. 26(2), 1982, pp. 1-14). | MR | Zbl

[6] J.-M. Deshouillers and H. Iwaniec, Kloosterman Sums and Fourier Coefficients of Cusp Forms (Invent. math. Vol. 70, 1982, pp. 219-288). | MR | Zbl

[7] T. Estermann, On the Representation of a Number as the Sum of Two Products (Proc. London. Math. Soc., Vol. 31, 1930, pp. 123-133). | JFM

[8] T. Estermann, Über die Darstellung einer Zahl als Differenz von zwei Produkten (J. Reine Angew. Math., Vol. 164, 1931, pp. 173-182). | JFM | Zbl

[9] H. Halberstam, An Asymptotic Formula in the Theory of Numbers (Trans. A.M.S., Vol. 84, 1957, pp. 338-351). | MR | Zbl

[10] D.R. Heath-Brown, The Fourth Power Moment of the Riemann Zeta-function (Proc. London Math. Soc., Vol. 38(3), 1979, pp. 385-422). | MR | Zbl

[11] A.E. Ingham, Some Asymptotic Formulae in the Theory of Numbers (J. London Math. Soc., Vol. 2, 1927, pp. 202-208). | JFM

[12] A. Ivić, Mean Values of the Riemann Zeta-function (Tata Lect. Notes in Math., Vol. 82, 1992).

[13] A. Ivić and Y. Motohashi, A Note on the Mean Value of the Zeta and L-functions (VII. Proc. Japan Acad., Vol. 66A, 1990, pp. 150-152). | MR | Zbl

[14] A. Ivić and Y. Motohashi, On the Fourth Power Moment of the Riemann Zeta-function, to appear in J. Number Theory. | Zbl

[15] A. Ivić and Y. Motohashi, The Mean Square of the Error Term for the Fourth Moment of the Zeta-function, to appear in Proc. London Math. Soc. | Zbl

[16] H. Iwaniec, Fourier Coefficients of Cusp Forms and The Riemann Zeta-function (Exp. n° 18, Sem. Th. Nombres, Univ. Bordeaux, 1979/1980). | Zbl

[17] M. Jutila, A Method in the Theory of Exponential Sums (Tata Lect. Notes in Math., Vol. 80, 1987). | MR

[18] M. Jutila, The Additive Divisor Problem and Exponential Sums (Advances in Number Theory, Clarendon Press, Oxford, 1993, pp. 113-135). | MR | Zbl

[19] N.V. Kuznetsov, Petersson Hypothesis for Forms of Weight Zero and Linnik Hypothesis, Preprint, 1977 (Russian).

[20] N.V. Kuznetsov, Spectral Method for Arithmetical Problems (Zap. Nauch. Sem., LOMI 76, 1978, pp. 159-166). | MR | Zbl

[21] N.V. Kuznetsov, Petersson Hypothesis for Parabolic Forms of Weight Zero and Linnik Hypothesis. Sums of Kloosterman sums (Math. Sbornik, Vol. 111, 1980, pp. 334-383). | MR | Zbl

[22] N.V. Kuznetsov, Convolution of the Fourier Coefficients of the Eisenstein-Maass Series (Zap. Nauch. Sem., LOMI 129, 1983, pp. 43-84). | MR | Zbl

[23] C. Moreno et F. Shahidi, The L-functions L(s, Symm(r), π) (Canadian Math. Bull., Vol. 28, 1985, pp. 405-410). | MR | Zbl

[24] Y. Motohashi, A Note on the Mean Value of the Zeta and L-functions. VI (Proc. Japan Acad., Vol. 65A, 1989, pp. 273-275). | MR | Zbl

[25] Y. Motohashi, An Explicit Formula for the Fourth Power Mean of the Riemann Zeta-function (Acta Mathematica, Vol. 170, 1993, pp. 181-220). | MR | Zbl

[26] Y. Motohashi, Spectral Mean Values of Maass Wave Form L-functions (J. Number Theory, Vol. 42, 1992, pp. 258-284). | MR | Zbl

[27] Y. Motohashi, Kuznetsov's trace formulas, Manuscript, 1991.

[28] R. Murty, On the Estimation of Eigen Values of Hecke Operators (Rocky Mountain J. Math., Vol. 15, 1985, pp. 521-533). | Zbl

[29] A. Selberg, On the Estimation of Fourier Coefficients of Modular Forms (Proc. Symp. Pure Math., Vol. 8, 1965, pp. 1-15). | MR | Zbl

[30] L. A. Tahtadjan and A. I. Vinogradov, The Zeta-function of the Additive Divisor Problem and the Spectral Decomposition of the Automorphic Laplacian (Zap. Nauch. Sem., LOMI 134, 1984, pp. 84-116, Russian). | Zbl

[31] N. I. Zavorotnyi, On the Fourth Moment of the Riemann Zeta-function, Preprint, 1986 (Russian).

  • Martin, Greg; Yang, Pu Justin Scarfy; Bahrini, Aram; Bajpai, Prajeet; Benli̇, Kübra; Downey, Jenna; Li, Yuan Yuan; Liang, Xiaoxuan; Parvardi, Amir; Simpson, Reginald; White, Ethan Patrick; Yip, Chi Hoi An annotated bibliography for comparative prime number theory, Expositiones Mathematicae, Volume 43 (2025) no. 3, p. 125644 | DOI:10.1016/j.exmath.2024.125644
  • Qi, Zhi On the Hankel transform of Bessel functions on complex numbers and explicit spectral formulae over the Gaussian field, Journal of Functional Analysis, Volume 288 (2025) no. 3, p. 110723 | DOI:10.1016/j.jfa.2024.110723
  • Cowan, Alex A twisted additive divisor problem, Journal of Number Theory, Volume 266 (2025), p. 1 | DOI:10.1016/j.jnt.2024.06.007
  • Lou, Miao Shifted convolution sums of divisor functions with Fourier coefficients, Journal of Number Theory, Volume 261 (2024), p. 1 | DOI:10.1016/j.jnt.2024.02.014
  • Harun, Mohd; Singh, Saurabh Kumar Shifted convolution sum with weighted average: GL(3)×GL(3) setup, Journal of Number Theory, Volume 261 (2024), p. 55 | DOI:10.1016/j.jnt.2024.02.006
  • Lou, Miao Triple correlations of ternary divisor functions. II, International Journal of Number Theory, Volume 19 (2023) no. 07, p. 1525 | DOI:10.1142/s1793042123500744
  • OLIVER, ROBERT J. LEMKE; SHRESTHA, SUNROSE T.; THORNE, FRANK Asymptotic identities for additive convolutions of sums of divisors, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 174 (2023) no. 1, p. 59 | DOI:10.1017/s0305004122000135
  • Zhai, Wenguang On a sum involving small arithmetic functions, International Journal of Number Theory, Volume 18 (2022) no. 09, p. 2029 | DOI:10.1142/s1793042122501044
  • Chamizo, Fernando The Additive Problem for the Number of Representations as a Sum of Two Squares, Mediterranean Journal of Mathematics, Volume 19 (2022) no. 1 | DOI:10.1007/s00009-021-01959-3
  • Bettin, Sandro; Drappeau, Sary Limit laws for rational continued fractions and value distribution of quantum modular forms, Proceedings of the London Mathematical Society, Volume 125 (2022) no. 6, p. 1377 | DOI:10.1112/plms.12485
  • Nordentoft, Asbjørn C.; Petridis, Yiannis N.; Risager, Morten S. Bounds on shifted convolution sums for Hecke eigenforms, Research in Number Theory, Volume 8 (2022) no. 2 | DOI:10.1007/s40993-022-00320-1
  • Hulse, Thomas A.; Kuan, Chan Ieong; Lowry-Duda, David; Walker, Alexander The Laplace transform of the second moment in the Gauss circle problem, Algebra Number Theory, Volume 15 (2021) no. 1, p. 1 | DOI:10.2140/ant.2021.15.1
  • Frolenkov, D. A. Nondiagonal terms in the second moment of automorphic -functions, Sbornik: Mathematics, Volume 211 (2020) no. 8, p. 1171 | DOI:10.1070/sm9313
  • Frolenkov, Dmitry Andreevich Недиагональные части второго момента L-функций автоморфных форм, Математический сборник, Volume 211 (2020) no. 8, p. 114 | DOI:10.4213/sm9313
  • Drappeau, Sary; Topacogullari, Berke Combinatorial identities and Titchmarsh’s divisor problem for multiplicative functions, Algebra Number Theory, Volume 13 (2019) no. 10, p. 2383 | DOI:10.2140/ant.2019.13.2383
  • Bettin, Sandro High moments of the Estermann function, Algebra Number Theory, Volume 13 (2019) no. 2, p. 251 | DOI:10.2140/ant.2019.13.251
  • Lou, Miao Averages of shifted convolution sums for arithmetic functions, Frontiers of Mathematics in China, Volume 14 (2019) no. 1, p. 123 | DOI:10.1007/s11464-019-0749-9
  • Ng, Nathan; Thom, Mark Bounds and conjectures for additive divisor sums, Functiones et Approximatio Commentarii Mathematici, Volume 60 (2019) no. 1 | DOI:10.7169/facm/1735
  • Lou, Miao; Lü, Guangshi Triple correlations of ternary divisor functions, Journal of Number Theory, Volume 198 (2019), p. 318 | DOI:10.1016/j.jnt.2018.10.016
  • Matomäki, Kaisa; Radziwiłł, Maksym; Tao, Terence Correlations of the von Mangoldt and higher divisor functions I. Long shift ranges, Proceedings of the London Mathematical Society, Volume 118 (2019) no. 2, p. 284 | DOI:10.1112/plms.12181
  • Maga, Péter The spectral decomposition of shifted convolution sums over number fields, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018 (2018) no. 744, p. 1 | DOI:10.1515/crelle-2016-0018
  • Blomer, Valentin On triple correlations of divisor functions, Bulletin of the London Mathematical Society, Volume 49 (2017) no. 1, p. 10 | DOI:10.1112/blms.12004
  • Diamond, Harold G. Heini Halberstam, 1926-2014, Bulletin of the London Mathematical Society, Volume 49 (2017) no. 6, p. 1119 | DOI:10.1112/blms.12115
  • Aryan, Farzad On the quadratic divisor problem, International Journal of Number Theory, Volume 13 (2017) no. 06, p. 1457 | DOI:10.1142/s1793042117500816
  • Vehkalahti, Eeva On the binary additive divisor problem in mean, Journal of Number Theory, Volume 177 (2017), p. 428 | DOI:10.1016/j.jnt.2017.01.016
  • Balkanova, Olga G.; Frolenkov, Dmitry A. On the Binary Additive Divisor Problem, Proceedings of the Steklov Institute of Mathematics, Volume 299 (2017) no. 1, p. 44 | DOI:10.1134/s0081543817080028
  • Bykovskii, Victor Alexeevich; Frolenkov, Dmitry Andreevich О средней длине конечных цепных дробей с фиксированным знаменателем, Математический сборник, Volume 208 (2017) no. 5, p. 63 | DOI:10.4213/sm8718
  • Young, Matthew P. The quantum unique ergodicity conjecture for thin sets, Advances in Mathematics, Volume 286 (2016), p. 958 | DOI:10.1016/j.aim.2015.09.013
  • Topacogullari, Berke THE SHIFTED CONVOLUTION OF DIVISOR FUNCTIONS, The Quarterly Journal of Mathematics, Volume 67 (2016) no. 2, p. 331 | DOI:10.1093/qmath/haw010
  • Lü, Guangshi; Wu, Jie; Zhai, Wenguang Shifted convolution of cusp-forms with θ θ -series, The Ramanujan Journal, Volume 40 (2016) no. 1, p. 115 | DOI:10.1007/s11139-015-9678-8
  • Murty, M. Ram; Murty, V. Kumar Prime Numbers and Highly Composite Numbers, The Mathematical Legacy of Srinivasa Ramanujan (2013), p. 135 | DOI:10.1007/978-81-322-0770-2_10
  • Suvitie, Eeva On the shifted convolution problem in mean, Journal of Number Theory, Volume 132 (2012) no. 9, p. 2046 | DOI:10.1016/j.jnt.2012.03.007
  • Baier, S.; Browning, T. D.; Marasingha, G.; Zhao, L. Averages of shifted convolutions ofd3(n), Proceedings of the Edinburgh Mathematical Society, Volume 55 (2012) no. 3, p. 551 | DOI:10.1017/s001309151100037x
  • Ivić, Aleksandar; Wu, Jie On the general additive divisor problem, Proceedings of the Steklov Institute of Mathematics, Volume 276 (2012) no. 1, p. 140 | DOI:10.1134/s0081543812010117
  • Narkiewicz, Władysław The First Years, Rational Number Theory in the 20th Century (2012), p. 13 | DOI:10.1007/978-0-85729-532-3_2
  • Young, Matthew The fourth moment of Dirichlet L-functions, Annals of Mathematics, Volume 173 (2011) no. 1, p. 1 | DOI:10.4007/annals.2011.173.1.1
  • Blomer, Valentin; Harcos, Gergely The spectral decomposition of shifted convolution sums, Duke Mathematical Journal, Volume 144 (2008) no. 2 | DOI:10.1215/00127094-2008-038
  • Ivić, Aleksandar On exponential sums with Hecke series at central points, Functiones et Approximatio Commentarii Mathematici, Volume 37 (2007) no. 2 | DOI:10.7169/facm/1229619651
  • Jutila, M. Sums of the additive divisor problem type and the inner product method, Journal of Mathematical Sciences, Volume 137 (2006) no. 2, p. 4755 | DOI:10.1007/s10958-006-0271-y
  • Jutila, Matti; Motohashi, Yoichi Uniform bound for Hecke L-functions, Acta Mathematica, Volume 195 (2005) no. 1, p. 61 | DOI:10.1007/bf02588051
  • Jutila, Matti Ilmari; Motohashi, Yoichi A note on the mean value of the zeta and L-functions. XI, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 78 (2002) no. 1 | DOI:10.3792/pjaa.78.1
  • Sarnak, Peter Estimates for Rankin–Selberg L-Functions and Quantum Unique Ergodicity, Journal of Functional Analysis, Volume 184 (2001) no. 2, p. 419 | DOI:10.1006/jfan.2001.3783
  • Iwaniec, Henryk; Sarnak, Peter The non-vanishing of central values of automorphic L-functions and Landau-Siegel zeros, Israel Journal of Mathematics, Volume 120 (2000) no. 1, p. 155 | DOI:10.1007/s11856-000-1275-9
  • Jutila, Matti The additive divisor problem and its analogs for fourier coefficients of cusp forms. I, Mathematische Zeitschrift, Volume 223 (1996) no. 1, p. 435 | DOI:10.1007/bf02621609
  • Jutila, Matti The additive divisor problem and its analogs for fourier coefficients of cusp forms. I, Mathematische Zeitschrift, Volume 223 (1996) no. 3, p. 435 | DOI:10.1007/pl00004270

Cité par 45 documents. Sources : Crossref