Degenerations for representations of tame quivers
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 28 (1995) no. 5, p. 647-668
@article{ASENS_1995_4_28_5_647_0,
     author = {Bongartz, Klaus},
     title = {Degenerations for representations of tame quivers},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Elsevier},
     volume = {Ser. 4, 28},
     number = {5},
     year = {1995},
     pages = {647-668},
     doi = {10.24033/asens.1728},
     zbl = {0844.16007},
     mrnumber = {96i:16020},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_1995_4_28_5_647_0}
}
Bongartz, Klaus. Degenerations for representations of tame quivers. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 28 (1995) no. 5, pp. 647-668. doi : 10.24033/asens.1728. https://www.numdam.org/item/ASENS_1995_4_28_5_647_0/

[1] S. Abeasis and A. Del Fra, Degenerations for the representations of a quiver of type Am (J. of Algebra, Vol. 93, 1985, pp. 376-412). | MR 86j:16028 | Zbl 0598.16030

[2] S. Abeasis and A. Del Fra, Degenerations for the representations of an equioriented quiver of type Dm (Adv. Math., Vol. 52, 1984, pp. 81-172). | MR 86g:16039 | Zbl 0537.16025

[3] M. Auslander and I. Reiten, Modules determined by their composition factors (Illinois J. Math., Vol. 29, 1985, pp. 289-301). | MR 86i:16032 | Zbl 0539.16011

[4] K. Bongartz, A generalization of a theorem of M.Auslander (Bull. London Math. Soc., Vol. 21, 1989, pp. 255-256). | MR 90b:16031 | Zbl 0669.16018

[5] K. Bongartz, A geometric version of the Morita equivalence (J. Algebra, Vol. 139, 1991, pp. 159-179). | MR 92f:16008 | Zbl 0787.16011

[6] K. Bongartz, On degenerations and extensions of finite dimensional modules (accepted 1990 for publication in Adv.Math., but not yet appeared, preprint of 53 pages). | Zbl 0862.16007

[7] K. Bongartz, Minimal singularities for representations of Dynkin quivers (to appear in Comm. Math. Helv., preprint of 24 pages, 1993). | Zbl 0832.16008

[8] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras (Memoirs Amer. Math. Soc., Vol. 173, 1976). | MR 56 #5657 | Zbl 0332.16015

[9] P. Donovan and M. R. Freislich, The representation theory of finite graphs and associated algebras (Carleton Lecture notes 5, Ottawa, 1973). | MR 50 #9701 | Zbl 0304.08006

[10] S. Friedland, Simultaneous similarity of matrices (Adv. Math., Vol. 50, 1983, pp. 189-265). | MR 86b:14020 | Zbl 0532.15009

[11] P. Gabriel, The universal cover of a representation-finite algebra, (Springer Lecture Notes, Vol. 903, 1980, pp. 68-105). | MR 83f:16036 | Zbl 0481.16008

[12] P. Gabriel, B. Keller and A. V. Roiter, Representations of finite-dimensional algebras (Encycl. Math. Sc., Vol. 73, 1992, pp. 1-176). | MR 94h:16001b

[13] G. Kempken, Eine Darstellung des Kchers Ãk (Bonner Math. Schriften, Vol. 137, 1982, pp. 1-159). | MR 84a:14022 | Zbl 0498.14021

[14] G. Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale (Math. Ann. Bd., Vol. 95, 1926, pp. 736-788). | JFM 52.0127.01

[15] L. A. Nazarova, Representations of quivers of infinite type (Izvest. Akad. Nauk. SSR, Ser. Mat., Vol. 37, 1973, pp. 752-791). | MR 49 #2785 | Zbl 0343.15004

[16] C. Riedtmann, Degenerations for representations of quivers with relations (Ann. Sci. Ecole Norm. Sup., Vol. 4, 1986, pp. 275-301). | Numdam | MR 88b:16051 | Zbl 0603.16025

[17] C. M. Ringel, Tame algebras and quadratic forms (Lecture Notes in Math. 1099, Springer Verlag, 1984). | MR 87f:16027 | Zbl 0546.16013

[18] C. M. Ringel, The rational invariants of tame quivers (Invent. Math., Vol. 58, 1980, pp. 217-239). | MR 81f:16048 | Zbl 0433.15009