The kernel of an homomorphism of Harish-Chandra
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 29 (1996) no. 3, pp. 385-397.
@article{ASENS_1996_4_29_3_385_0,
     author = {Levasseur, T. and Stafford, J. T.},
     title = {The kernel of an homomorphism of {Harish-Chandra}},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {385--397},
     publisher = {Elsevier},
     volume = {Ser. 4, 29},
     number = {3},
     year = {1996},
     doi = {10.24033/asens.1743},
     mrnumber = {97b:22019},
     zbl = {0859.22010},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.1743/}
}
TY  - JOUR
AU  - Levasseur, T.
AU  - Stafford, J. T.
TI  - The kernel of an homomorphism of Harish-Chandra
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1996
SP  - 385
EP  - 397
VL  - 29
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.24033/asens.1743/
DO  - 10.24033/asens.1743
LA  - en
ID  - ASENS_1996_4_29_3_385_0
ER  - 
%0 Journal Article
%A Levasseur, T.
%A Stafford, J. T.
%T The kernel of an homomorphism of Harish-Chandra
%J Annales scientifiques de l'École Normale Supérieure
%D 1996
%P 385-397
%V 29
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.24033/asens.1743/
%R 10.24033/asens.1743
%G en
%F ASENS_1996_4_29_3_385_0
Levasseur, T.; Stafford, J. T. The kernel of an homomorphism of Harish-Chandra. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 29 (1996) no. 3, pp. 385-397. doi : 10.24033/asens.1743. http://archive.numdam.org/articles/10.24033/asens.1743/

[1] J.-E. Björk, Rings of Differential Operators, North Holland, Amsterdam, 1979. | Zbl

[2] A. Borel et al., Algebraic D-modules, Academic Press, Boston, 1987. | MR | Zbl

[3] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, 1956. | MR | Zbl

[4] J. Dixmier, Champs de vecteurs adjoints sur les groupes et algèbres de Lie semi-simple (J. Reine Angew. Math., Vol. 309, 1979, pp. 183-190). | MR | Zbl

[5] K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge Univ. Press, Cambridge, 1989.

[6] Harish-Chandra, Invariant distributions on Lie algebras (Amer. J. Math., Vol. 86, 1964, pp. 271-309). | MR | Zbl

[7] Harish-Chandra, Invariant differential operators and distributions on a semi-simple Lie algebra (Amer. J. Math., Vol. 86, 1964, pp. 534-564). | MR | Zbl

[8] Harish-Chandra, Invariant eigendistributions on a semi-simple Lie algebra (Inst. Hautes Etudes Sci. Publ. Math., Vol. 27, 1965, pp. 5-54). | Numdam | MR | Zbl

[9] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1979.

[10] R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra (Invent. Math., Vol. 75, 1984, pp. 327-358). | MR | Zbl

[11] A. Joseph, A generalization of Quillen's Lemma and its applications to the Weyl algebras (Israel J. Math., Vol. 28, 1977, pp. 177-192). | MR | Zbl

[12] M. Kashiwara, The Invariant Holonomic System on a Semisimple Lie Group (in “Algebraic Analysis” dedicated to M. Sato, Vol. 1, 1988, pp. 277-286, Academic Press). | MR | Zbl

[13] B. Kostant, Lie group representations on polynomial rings (Amer. J. Math., Vol. 85, 1963, pp. 327-404). | MR | Zbl

[14] T. Levasseur and J. T. Stafford, Invariant differential operators and an homomorphism of Harish-Chandra (J. Amer. Math. Soc., Vol. 8, 1995, pp. 365-372). | MR | Zbl

[15] J. C. Mcconnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley, Chichester, 1987. | MR | Zbl

[16] S. Montgomery, Fixed Rings of Finite Automorphism Groups of Associative Rings (Lecture Notes in Mathematics, Vol. 818, Springer-Verlag, Berlin/New York, 1980). | MR | Zbl

[17] R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups (Compositio Math., Vol. 38, 1979, pp. 311-322). | Numdam | MR | Zbl

[18] G. W. Schwarz, Lifting differential operators from orbit spaces (Ann. Sci. Ecole Norm. Sup., Vol. 28, 1995, pp. 253-306). | Numdam | MR | Zbl

[19] G. W. Schwarz, Invariant differential operators (Proceedings of the 1994 International Congress of Mathematics, to appear). | Zbl

[20] V. S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Part I (Lecture Notes in Mathematics Vol. 576, Springer-Verlag, Berlin/New York, 1977). | MR | Zbl

[21] N. Wallach, Invariant differential operators on a reductive Lie algebra and Weyl group representations (J. Amer. Math. Soc., Vol. 6, 1993, pp. 779-816). | MR | Zbl

Cité par Sources :