Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse)
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 30 (1997) no. 1, p. 41-96
@article{ASENS_1997_4_30_1_41_0,
     author = {Biquard, Olivier},
     title = {Fibr\'es de Higgs et connexions int\'egrables : le cas logarithmique (diviseur lisse)},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Elsevier},
     volume = {4e s{\'e}rie, 30},
     number = {1},
     year = {1997},
     pages = {41-96},
     doi = {10.1016/s0012-9593(97)89915-6},
     zbl = {0876.53043},
     mrnumber = {98e:32054},
     language = {fr},
     url = {http://www.numdam.org/item/ASENS_1997_4_30_1_41_0}
}
Biquard, Olivier. Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse). Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 30 (1997) no. 1, pp. 41-96. doi : 10.1016/s0012-9593(97)89915-6. http://www.numdam.org/item/ASENS_1997_4_30_1_41_0/

[1] O. Biquard, Fibrés paraboliques stables et connexions singulières plates (Bull. Soc. Math. France, vol. 119, 1991, p. 231-257). | Numdam | MR 93a:58039 | Zbl 0769.53013

[2] O. Biquard, Prolongement d'un fibré holomorphe hermitien à courbure Lp sur une courbe ouverte (Int. J. Math., vol. 3, 1992, p. 441-453). | MR 93k:32066 | Zbl 0764.32008

[3] O. Biquard, Sur les fibrés paraboliques sur une surface complexe (J. London Math. Soc., vol. 53, 1996, p. 302-316). | MR 97b:32038 | Zbl 0862.53025

[4] O. Biquard, Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semi-simples complexes (Math. Ann., vol. 304, 1996, p. 253-276). | MR 97c:53066 | Zbl 0843.53027

[5] I. Biswas et S. Ramanan, An infinitesimal study of the moduli of Hitchin pairs (J. London Math. Soc., vol. 49, 1994, p. 219-231). | MR 94k:14006 | Zbl 0819.58007

[6] E. Cattani, A. Kaplan et W. Schmid, L2 and intersection cohomologies for a polarizable variation of Hodge structure (Inventiones math., vol. 87, 1987, p. 217-252). | MR 88h:32019 | Zbl 0611.14006

[7] K. Corlette, Flat G-bundles with canonical metrics (J. Differential Geom., vol. 28, 1988, p. 361-382). | MR 89k:58066 | Zbl 0676.58007

[8] M. Cornalba et P. Griffiths, Analytic cycles and vector bundles on non-compact algebraic varieties (Inventiones math., vol. 28, 1975, p. 1-106). | MR 51 #3505 | Zbl 0293.32026

[9] S. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, (J. Differential Geom., vol. 18, 1983, p. 269-277). | MR 85a:32036 | Zbl 0504.49027

[10] S. Donaldson, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles (Proc. London Math. Soc., (3) 50, 1985, p. 1-26). | MR 86h:58038 | Zbl 0529.53018

[11] S. Donaldson, Infinite determinants, stable bundles and curvature (Duke Math. J., vol. 54, 1987, p. 231-247). | MR 88g:32046 | Zbl 0627.53052

[12] S. Donaldson, Twisted harmonic maps and self-duality equations (Proc. London Math. Soc., vol. 55, 1987, p. 127-131). | MR 88g:58040 | Zbl 0634.53046

[13] A. Fujiki, Hyper-Kähler structure on the moduli space of flat bundles (Prospects in complex geometry (Katata and Kyoto, 1989), 1-83, L.N.M. 1468, Springer (Berlin 1991)). | Zbl 0749.32011

[14] W. Goldman et J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds (Publ. Math. I.H.E.S., vol. 67, 1988, p. 43-96). | Numdam | MR 90b:32041 | Zbl 0678.53059

[15] N. Hitchin, The self-duality equations on a Riemann surface (Proc. London Math. Soc., vol. 55, 1987, p. 59-126). | MR 89a:32021 | Zbl 0634.53045

[16] J. Jost et K. Zuo, Harmonic maps and Sl(r, ℂ)-representations of fundamental groups of quasiprojective manifolds (J. Algebr. Geom., vol. 5, 1996, p. 77-106). | MR 97a:58043 | Zbl 0853.58038

[17] J. Jost et K. Zuo, Harmonic maps of infinite energy and rigidity results for archimedean and nonarchimedean representations of fundamental groups of quasiprojective varieties, preprint.

[18] M. Kashiwara et T. Kawai, The Poincaré lemma for variations of polarized Hodge structure (Publ. RIMS Kyoto Univ., vol. 23, 1987, p. 345-407). | MR 89g:32035 | Zbl 0629.14005

[19] P. Kronheimer et M. Mrowka, Gauge theory for embedded surfaces, I (Topology, vol. 32, 1993, p. 773-826). | MR 94k:57048 | Zbl 0799.57007

[20] J. Le Potier, Fibrés de Higgs et systèmes locaux (Séminaire Bourbaki, exposé 737, 1991). | Numdam | MR 93e:14012 | Zbl 0762.14011

[21] R. Lockart et R. Mcowen, Elliptic differential operators on noncompact manifolds (Ann. Scuola. Norm. Sup. Pisa Cl. Sci., (4) 12, 1985, p. 409-447). | Numdam | MR 87k:58266 | Zbl 0615.58048

[22] C. Margerin, Fibrés stables et métriques d'Hermite-Einstein, d'après S. K. Donaldson, K. K. Uhlenbeck et S. T. Yau (Séminaire Bourbaki, exposé 683, 1987). | Numdam | Zbl 0637.53080

[23] V. Maz'Ya et B. Plamenevskii, Estimates in Lp and in Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary (Amer. Math. Soc. Transl., (2) 123, 1984, p. 1-56). | Zbl 0554.35035

[24] V. Mehta et C. Seshadri, Moduli of vector bundles on curves with parabolic structures (Math. Ann., vol. 248, 1980, p. 205-239). | MR 81i:14010 | Zbl 0454.14006

[25] M. Narasimhan et C. Seshadri, Stable and unitary bundles on a compact Riemann surface (Ann. Math., vol. 82, 1965, p. 540-564). | MR 32 #1725 | Zbl 0171.04803

[26] N. Nitsure, Moduli of semistable logarithmic connections (J. Amer. Math. Soc., vol. 6, 1993, p. 597-609). | MR 93i:32025 | Zbl 0807.14007

[27] C. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization (J. Amer. Math. Soc., vol. 1, 1988, p. 867-918). | MR 90e:58026 | Zbl 0669.58008

[28] C. Simpson, Harmonic bundles on noncompact curves (J. Amer. Math. Soc., vol. 3, 1990, p. 713-770). | MR 91h:58029 | Zbl 0713.58012

[29] C. Simpson, Higgs bundles and local systems (Publ. Math. I.H.E.S., vol. 75, 1992, p. 5-95). | Numdam | MR 94d:32027 | Zbl 0814.32003

[30] K. Uhlenbeck et S. T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles (Commun. Pure Appl. Math., vol. 39S, 1986, p. 257-293). | MR 88i:58154 | Zbl 0615.58045

[31] K. Uhlenbeck et S. T. Yau, A note on our previous paper : on the existence of Hermitian-Yang-Mills connections in stable vector bundles (Commun. Pure Appl. Math., vol. 42, 1989, p. 703-707). | MR 90i:58029 | Zbl 0678.58041

[32] S. Zucker, Hodge theory with degenerating coefficients : L2 cohomology in the Poincaré metric (Ann. Math., (2) 109, 1979, p. 415-476). | MR 81a:14002 | Zbl 0446.14002