Convexité rationnelle des sous-variétés immergées lagrangiennes
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 33 (2000) no. 2, p. 291-300
@article{ASENS_2000_4_33_2_291_0,
     author = {Gayet, Damien},
     title = {Convexit\'e rationnelle des sous-vari\'et\'es immerg\'ees lagrangiennes},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Elsevier},
     volume = {4e s{\'e}rie, 33},
     number = {2},
     year = {2000},
     pages = {291-300},
     doi = {10.1016/s0012-9593(00)00108-7},
     zbl = {0972.53047},
     mrnumber = {2001m:32054},
     language = {fr},
     url = {http://www.numdam.org/item/ASENS_2000_4_33_2_291_0}
}
Gayet, Damien. Convexité rationnelle des sous-variétés immergées lagrangiennes. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 33 (2000) no. 2, pp. 291-300. doi : 10.1016/s0012-9593(00)00108-7. http://www.numdam.org/item/ASENS_2000_4_33_2_291_0/

[1] Boonstra B., Handles for strictly pseudoconvex domains, Preprint.

[2] Chirka E.M., Smirnov M.M., Polynomial convexity of some sets in ℂn, Mat. Zametki 50 (5) (1991) 81-89. | MR 93d:32020 | Zbl 0742.32010

[3] Duval J., Une caractérisation kählerienne des surfaces rationnellement convexes, Acta Math. 172 (1994) 77-89. | MR 95a:32015 | Zbl 0810.32008

[4] Duval J., Sibony N., Polynomial convexity, rational convexity, and currents, Duke Math. J. 79 (1995) 487-513. | MR 96f:32016 | Zbl 0838.32006

[5] Gromov M., Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307-347. | MR 87j:53053 | Zbl 0592.53025

[6] Hörmander L., An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1988.

[7] Hörmander L., Wermer J., Uniform approximation on compact sets in ℂn, Math. Scand. 23 (1968) 5-21. | Zbl 0181.36201