A subconvexity bound for Hecke L-functions
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 34 (2001) no. 5, pp. 669-683.
@article{ASENS_2001_4_34_5_669_0,
     author = {Fouvry, \'Etienne and Iwaniec, Henryk},
     title = {A subconvexity bound for {Hecke} $L$-functions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {669--683},
     publisher = {Elsevier},
     volume = {Ser. 4, 34},
     number = {5},
     year = {2001},
     doi = {10.1016/s0012-9593(01)01073-4},
     zbl = {0995.11062},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/s0012-9593(01)01073-4/}
}
TY  - JOUR
AU  - Fouvry, Étienne
AU  - Iwaniec, Henryk
TI  - A subconvexity bound for Hecke $L$-functions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2001
SP  - 669
EP  - 683
VL  - 34
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/s0012-9593(01)01073-4/
DO  - 10.1016/s0012-9593(01)01073-4
LA  - en
ID  - ASENS_2001_4_34_5_669_0
ER  - 
%0 Journal Article
%A Fouvry, Étienne
%A Iwaniec, Henryk
%T A subconvexity bound for Hecke $L$-functions
%J Annales scientifiques de l'École Normale Supérieure
%D 2001
%P 669-683
%V 34
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/s0012-9593(01)01073-4/
%R 10.1016/s0012-9593(01)01073-4
%G en
%F ASENS_2001_4_34_5_669_0
Fouvry, Étienne; Iwaniec, Henryk. A subconvexity bound for Hecke $L$-functions. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 34 (2001) no. 5, pp. 669-683. doi : 10.1016/s0012-9593(01)01073-4. http://archive.numdam.org/articles/10.1016/s0012-9593(01)01073-4/

[1] Burgess D.A., On character sums and L-series, I, Proc. London Math. Soc. 12 (3) (1962) 193-206. | MR | Zbl

[2] Conrey J.B, Iwaniec H., The cubic moment of central values of automorphic L-functions, Ann. of Math. 151 (2000) 1175-1216. | EuDML | MR | Zbl

[3] Duke W., Friedlander J., Iwaniec H., Bounds for automorphic L-functions. II, Invent. Math. 115 (1994) 209-217. | EuDML | MR | Zbl

[4] Friedlander J., Bounds for L-functions, in: Proceedings of the International Congress of Mathematicians, (Zürich, 1994), Birkhäuser Verlag, 1995, pp. 363-373. | MR | Zbl

[5] Hecke E., Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 6 (1920) 11-51. | EuDML | JFM | MR

[6] Rodriguez Villegas F., On the square root of special values of certain L-series, Invent. Math. 106 (1991) 549-573. | EuDML | MR | Zbl

[7] Rodriguez Villegas F., Zagier D., Square roots of central values of L-series, in: Gouvea F., Yui N. (Eds.), Advances in Number Theory, Proceedings of the Third Conference of the Canadian Number Theory Association, Kingston, Ontario, (1991), Clarendon Press, Oxford, 1993, pp. 81-99. | MR | Zbl

[8] Rohrlich D., The non-vanishing of certain Hecke L-functions at the center of the critical strip, Duke Math. J. 47 (1980) 223-231. | MR | Zbl

[9] Schmidt W., Equations over Finite Fields: An Elementary Approach, Lect. Notes in Math., 534, Springer-Verlag, 1976. | MR | Zbl

[10] Siegel C.L., Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1936) 83-86. | JFM

[11] Weyl H., Zur Abschätzung von ζ(1+ti), Math. Z. 10 (1921) 88-101. | JFM

Cited by Sources: