On determining a riemannian manifold from the Dirichlet-to-Neumann map
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 34 (2001) no. 5, p. 771-787
@article{ASENS_2001_4_34_5_771_0,
     author = {Lassas, Matti and Uhlmann, Gunther},
     title = {On determining a riemannian manifold from the Dirichlet-to-Neumann map},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Elsevier},
     volume = {Ser. 4, 34},
     number = {5},
     year = {2001},
     pages = {771-787},
     doi = {10.1016/s0012-9593(01)01076-x},
     zbl = {0992.35120},
     mrnumber = {1862026},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_2001_4_34_5_771_0}
}
Lassas, Matti; Uhlmann, Gunther. On determining a riemannian manifold from the Dirichlet-to-Neumann map. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 34 (2001) no. 5, pp. 771-787. doi : 10.1016/s0012-9593(01)01076-x. http://www.numdam.org/item/ASENS_2001_4_34_5_771_0/

[1] Brown R., Global uniqueness in the impedance imaging problem for less regular conductivities, SIAM J. Math. Anal. 27 (1996) 1049-1056. | MR 1393424 | Zbl 0867.35111

[2] Brown R., Uhlmann G., Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. Partial Differential Equations 22 (1997) 1009-1027. | MR 1452176 | Zbl 0884.35167

[3] Calderón A.P., On an inverse boundary value problem, in: Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Río de Janeiro, 1980, pp. 65-73. | MR 590275

[4] Hörmander L., The Analysis of Linear Partial Differential Operators III, Springer-Verlag, 1985. | MR 781536 | Zbl 0601.35001

[5] Isakov V., Inverse Problems for Partial Differential Equations, Springer-Verlag, 1998, 284 pp. | MR 1482521 | Zbl 0908.35134

[6] Kohn R., Vogelius M., Determining conductivity by boundary measurements II. Interior results, Comm. Pure Appl. Math. 38 (1985) 643-667. | MR 803253 | Zbl 0595.35092

[7] Lee J., Uhlmann G., Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math. 42 (1989) 1097-1112. | MR 1029119 | Zbl 0702.35036

[8] Nachman A., A global uniqueness for a two-dimensional inverse problem, Ann. Math. 142 (2) (1996) 71-96. | MR 1370758 | Zbl 0857.35135

[9] Petersen P., Riemannian Geometry, Springer-Verlag, 1998. | MR 1480173 | Zbl 0914.53001

[10] Sylvester J., An anisotropic inverse boundary value problem, Comm. Pure Appl. Math. 38 (1990) 201-232. | MR 1038142 | Zbl 0709.35102

[11] Sylvester J., Uhlmann G., A uniqueness theorem for an inverse boundary problem, Ann. Math. 125 (2) (1987) 153-169. | MR 873380 | Zbl 0625.35078

[12] Taylor M., Partial Differential Equations II, Springer-Verlag, 1996. | Zbl 0869.35004

[13] Taylor M., Partial Differential Equations III, Springer-Verlag, 1996. | Zbl 0869.35004

[14] Tennison B., Sheaf Theory, Cambridge University Press, 1975, 164 pp. | MR 404390 | Zbl 0313.18010

[15] Uhlmann G., Developments in inverse problems since Calderón's foundational paper, in: Harmonic Analysis and Partial Differential Equations, University of Chicago Press, 1999, pp. 245-295, [Essays in honor of Alberto P. Calderón, University of Chicago Press, edited by Christ M., Kenig C. and Sadosky C.]. | MR 1743870 | Zbl 0963.35203

[16] Vekua I., Generalized Analytic Functions, Pergamon Press, 1962. | MR 150320 | Zbl 0100.07603