ε-constants and equivariant Arakelov-Euler characteristics
Annales scientifiques de l'École Normale Supérieure, Série 4, Volume 35 (2002) no. 3, p. 307-352
@article{ASENS_2002_4_35_3_307_0,
     author = {Chinburg, Ted and Pappas, Georgios and Taylor, Martin J.},
     title = {$\varepsilon $-constants and equivariant Arakelov-Euler characteristics},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Elsevier},
     volume = {Ser. 4, 35},
     number = {3},
     year = {2002},
     pages = {307-352},
     doi = {10.1016/s0012-9593(02)01091-1},
     zbl = {1039.11078},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_2002_4_35_3_307_0}
}
Chinburg, Ted; Pappas, Georgios; Taylor, Martin J. $\varepsilon $-constants and equivariant Arakelov-Euler characteristics. Annales scientifiques de l'École Normale Supérieure, Série 4, Volume 35 (2002) no. 3, pp. 307-352. doi : 10.1016/s0012-9593(02)01091-1. http://www.numdam.org/item/ASENS_2002_4_35_3_307_0/

[1] Arai K., Conductor formula of Bloch, in tame case, Thesis, University of Tokyo, 2000 (in Japanese).

[2] Bismut J.-M., Equivariant immersions and Quillen metrics, J. Differential Geom. 41 (1995) 53-157. | MR 1316553 | Zbl 0826.32024

[3] Bloch S., Cycles on Arithmetic schemes and Euler characteristics of curves, in: Proceedings of Symposia in Pure Math., Vol. 46, Part 2, AMS, 421-450. | MR 927991 | Zbl 0654.14004

[4] Burns D., Equivariant Tamagawa numbers and Galois module theory I, preprint. | MR 1863302

[5] Burns D., Equivariant Tamagawa numbers and Galois module theory II, preprint. | MR 1863302

[6] Cassou-Noguès Ph., Taylor M.J., Local root numbers and hermitian Galois structure of rings of integers, Math. Annalen, 263 (1983) 251-261. | MR 698007 | Zbl 0494.12010

[7] Chinburg T., Galois structure of de Rham cohomology of tame covers of schemes, Ann. Math. 139 (1994) 443-490, Corrigendum: Ann. Math. 140 (1994) 251. | MR 1274097 | Zbl 0828.14007

[8] Chinburg T., Erez B., Pappas G., Taylor M.J., ε-constants and the Galois structure of de Rham cohomology, Ann. Math. 146 (1997) 411-473. | Zbl 0939.14009

[9] Chinburg T., Erez B., Pappas G., Taylor M.J., On the ε-constants of arithmetic schemes, Math. Ann. 311 (1998) 377-395. | Zbl 0927.14012

[10] Chinburg T., Erez B., Pappas G., Taylor M.J., On the ε-constants of a variety over a finite field, Amer. J. Math. 119 (1997) 503-522. | Zbl 0927.14013

[11] Chinburg T., Erez B., Pappas G., Taylor M.J., Tame actions of group schemes: integrals and slices, Duke Math. J. 82 (2) (1996) 269-308. | MR 1387229 | Zbl 0907.14021

[12] Chinburg T., Pappas G., Taylor M.J., ε-constants and the Galois structure of de Rham cohomology II, J. Reine Angew. Math. 519 (2000) 201-230. | Zbl 1017.11054

[13] Chinburg T., Pappas G., Taylor M.J., ε-constants and Arakelov-Euler characteristics, Math. Res. Lett. 7 (2000) 433-446. | Zbl 1097.14501

[14] Chinburg T., Pappas G., Taylor M.J., Duality and hermitian Galois module structure, to appear in the Proc. L.M.S. | MR 1978570 | Zbl 1109.11053

[15] Deligne P., Les constantes des équations fonctionnelles des fonctions L, in: Lecture Notes in Math., 349, Springer-Verlag, Heidelberg, 1974, pp. 501-597. | MR 349635 | Zbl 0271.14011

[16] Fröhlich A., Galois Module Structure of Algebraic Integers, Springer Ergebnisse, Band 1, Folge 3, Springer-Verlag, Heidelberg, 1983. | MR 717033 | Zbl 0501.12012

[17] Fröhlich A., Classgroups and Hermitian Modules, Progress in Mathematics, 48, Birkhäuser, Basel, 1984. | MR 756236 | Zbl 0539.12005

[18] Fröhlich A., Taylor M.J., Algebraic Number Theory, Cambridge Studies in Advanced Mathematics, 27, Cambridge University Press, 1991. | MR 1215934 | Zbl 0744.11001

[19] Fulton W., Lang S., Riemann-Roch Algebra, Grundlehren, 277, Springer-Verlag, 1985. | MR 801033 | Zbl 0579.14011

[20] Gillet H., Soulé C., Characteristic classes for algebraic vector bundles with hermitian metrics I, II, Ann. Math. 131 (1990) 163-203, 205-238. | MR 1038362 | Zbl 0715.14018

[21] Gillet H., Soulé C., An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992) 473-543. | MR 1189489 | Zbl 0777.14008

[22] Gillet H., Soulé C., Analytic torsion and the arithmetic Todd genus. With an appendix by D. Zagier, Topology 30 (1) (1991) 21-54. | MR 1081932 | Zbl 0787.14005

[23] Hartshorne R., Residues and Duality, Lecture Notes in Math., 20, Springer-Verlag, 1966. | MR 222093 | Zbl 0212.26101

[24] Hecke E., Mathematische Werke, Vandenhoeck and Ruprecht, Göttingen, 1983. | MR 749754 | Zbl 0092.00102

[25] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Springer Graduate Texts in Mathematics, 84, Springer, New York, 1982. | MR 661047 | Zbl 0482.10001

[26] Kato K., Logarithmic structures of Fontaine-Illusie, in: Proc. 1st JAMI Conf., Johns-Hopkins Univ. Press, 1990, pp. 191-224. | MR 1463703 | Zbl 0776.14004

[27] Knusden F., Mumford D., The projectivity of moduli spaces of stable curves, Math. Scand. 39 (1976) 19-55. | MR 437541 | Zbl 0343.14008

[28] Kato K., Saito T., Conductor formula of Bloch, preprint, 2001.

[29] Lang S., Algebraic Number Theory, Addison-Wesley, Reading MA, 1970. | MR 282947 | Zbl 0211.38404

[30] Martinet J., Character theory and Artin L-functions, in: Fröhlich A. (Ed.), Algebraic Number Fields, Proc. Durham Symposium 1975, Academic Press, London, 1977. | MR 447187 | Zbl 0359.12015

[31] Milne J.S., Étale Cohomology, Princeton University Press, 1980. | MR 559531 | Zbl 0433.14012

[32] Ray D.B., Singer I.M., Analytic torsion for complex manifolds, Ann. of Math. (2) 98 (1973) 154-177. | MR 383463 | Zbl 0267.32014

[33] Saito T., ε-factor of a tamely ramified sheaf on a variety, Inv. Math. 113 (1993) 389-417. | Zbl 0790.14016

[34] Soulé C., Abramovich D., Burnol J.-F., Kramer J., Lectures on Arakelov Geometry, Cambridge Studies in Advanced Mathematics, 33, Cambridge University Press, Cambridge, 1992. | MR 1208731 | Zbl 0812.14015

[35] Tate J., Fröhlich A. (Ed.), Thesis in “Algebraic Number Fields”, Academic Press, 1976.

[36] Taylor M.J., On Fröhlich's conjecture for rings of integers of tame extensions, Invent. Math. 63 (1981) 41-79. | MR 608528 | Zbl 0469.12003

[37] Taylor M.J., Classgroups of Group Rings, LMS Lecture Notes, 91, Cambridge University Press, Cambridge, 1984. | MR 748670 | Zbl 0597.13002