@article{ASENS_2004_4_37_1_45_0, author = {Boucksom, S\'ebastien}, title = {Divisorial {Zariski} decompositions on compact complex manifolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {45--76}, publisher = {Elsevier}, volume = {Ser. 4, 37}, number = {1}, year = {2004}, doi = {10.1016/j.ansens.2003.04.002}, mrnumber = {2050205}, zbl = {1054.32010}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.ansens.2003.04.002/} }
TY - JOUR AU - Boucksom, Sébastien TI - Divisorial Zariski decompositions on compact complex manifolds JO - Annales scientifiques de l'École Normale Supérieure PY - 2004 SP - 45 EP - 76 VL - 37 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.ansens.2003.04.002/ DO - 10.1016/j.ansens.2003.04.002 LA - en ID - ASENS_2004_4_37_1_45_0 ER -
%0 Journal Article %A Boucksom, Sébastien %T Divisorial Zariski decompositions on compact complex manifolds %J Annales scientifiques de l'École Normale Supérieure %D 2004 %P 45-76 %V 37 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.ansens.2003.04.002/ %R 10.1016/j.ansens.2003.04.002 %G en %F ASENS_2004_4_37_1_45_0
Boucksom, Sébastien. Divisorial Zariski decompositions on compact complex manifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 37 (2004) no. 1, pp. 45-76. doi : 10.1016/j.ansens.2003.04.002. http://archive.numdam.org/articles/10.1016/j.ansens.2003.04.002/
[1] Le cône kählérien d'une variété hyperkählérienne, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 935-938. | MR | Zbl
,[2] On the volume of a line bundle, math.AG/0201031.
,[3] Zariski decomposition of divisors on algebraic varieties, Duke Math. J. 53 (1986) 149-156. | MR | Zbl
,[4] Estimations L2 pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. 15 (1982) 457-511. | Numdam | Zbl
,[5] Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992) 361-409. | MR | Zbl
,[6] Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Proc. Symp. Pure Math. 62 (2) (1997). | MR | Zbl
,[7] Numerical characterization of the Kähler cone of a compact Kähler manifold, math.AG/0105176.
, ,[8] Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994) 295-345. | MR | Zbl
, , ,[9] A subadditivity property of multiplier ideals, math.AG/0002035.
, , ,[10] Pseudoeffective line bundles on compact Kähler manifolds, math.AG/0006205.
, , ,[11] On Zariski problem, Proc. Japan Acad., Ser. A 55 (1979) 106-110. | MR | Zbl
,[12] Remarks on quasi-polarized varieties, Nagoya Math. J. 115 (1989) 105-123. | MR | Zbl
,[13] Algebraic Geometry, GTM, vol. 52, Springer-Verlag, 1977. | MR | Zbl
,[14] The Kähler cone of a compact hyperkähler manifold, math.AG/9909109.
,[15] Courants kählériens et surfaces compactes, Ann. Inst. Fourier 49 (1999) 249-263. | Numdam | MR | Zbl
,[16] Nakayama N., Zariski decomposition and abundance, preprint RIMS. | MR
[17] Sur l'effectivité numérique des images inverses de fibrés en droites, Math. Ann. 310 (1998) 411-421. | MR | Zbl
,[18] Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1974) 53-156. | MR | Zbl
,[19] The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math. 76 (2) (1962) 560-615. | MR | Zbl
,Cité par Sources :