@article{ASENS_2004_4_37_5_729_0, author = {Gonz\'alez-Meneses, Juan and Wiest, Bert}, title = {On the structure of the centralizer of a braid}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {729--757}, publisher = {Elsevier}, volume = {Ser. 4, 37}, number = {5}, year = {2004}, doi = {10.1016/j.ansens.2004.04.002}, mrnumber = {2103472}, zbl = {1082.20024}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.ansens.2004.04.002/} }
TY - JOUR AU - González-Meneses, Juan AU - Wiest, Bert TI - On the structure of the centralizer of a braid JO - Annales scientifiques de l'École Normale Supérieure PY - 2004 SP - 729 EP - 757 VL - 37 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.ansens.2004.04.002/ DO - 10.1016/j.ansens.2004.04.002 LA - en ID - ASENS_2004_4_37_5_729_0 ER -
%0 Journal Article %A González-Meneses, Juan %A Wiest, Bert %T On the structure of the centralizer of a braid %J Annales scientifiques de l'École Normale Supérieure %D 2004 %P 729-757 %V 37 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.ansens.2004.04.002/ %R 10.1016/j.ansens.2004.04.002 %G en %F ASENS_2004_4_37_5_729_0
González-Meneses, Juan; Wiest, Bert. On the structure of the centralizer of a braid. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 37 (2004) no. 5, pp. 729-757. doi : 10.1016/j.ansens.2004.04.002. https://www.numdam.org/articles/10.1016/j.ansens.2004.04.002/
[1] The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969) 227-231. | MR | Zbl
,[2] A combinatorial approach to reducibility of mapping classes, Contemporary Math. 150 (1993) 1-31. | MR | Zbl
, , ,[3] Braids and the Nielsen-Thurston classification, J. Knot Theory Ramifications 4 (1995) 549-618. | MR | Zbl
, , ,[4] Springer theory in braid groups and the Birman-Ko-Lee monoid, Pacific J. Math. 205 (2) (2002) 287-309. | MR | Zbl
, , ,[5] Train-tracks for surface homeomorphisms, Topology 34 (1995) 109-140. | MR | Zbl
, ,[6] Braids, Links, and Mapping Class Groups, Annals of Math. Studies, vol. 82, Princeton University Press, 1975. | MR | Zbl
,[7] A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (1998) 322-353. | MR | Zbl
, , ,[8] Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983) 1107-1120. | MR | Zbl
, , ,[9] An implementation of the Bestvina-Handel algorithm for surface homeomorphisms, Experiment. Math. 9 (2000) 235-240, Computer program available at, http://www.math.uiuc.edu/~brinkman/software/train/. | MR | Zbl
,[10] Über Normalisatoren der Zopfgruppe, Abh. Math. Sem. Univ. Hamburg 27 (1964) 97-115. | MR | Zbl
,[11] The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere, Enseign. Math. (2) 40 (3-4) (1994) 193-204. | MR | Zbl
, ,[12] Sur les transformations périodiques de la surface de sphère, Fund. Math. 22 (1934) 28-41. | Zbl
,[13] Algorithms for positive braids, Quart. J. Math. Oxford Ser. (2) 45 (180) (1994) 479-497. | MR | Zbl
, ,[14] Travaux de Thurston sur les surfaces - séminaire Orsay, Astérisque, vols. 66-67, Société Math. de France, 1991. | Numdam | MR | Zbl
, , ,[15] Centralisers in the braid group and singular braid monoid, Enseign. Math. 42 (1996) 75-96. | MR | Zbl
, , ,[16] Conjugacy problem for braid groups and Garside groups, J. Algebra 266 (2003) 112-132. | MR | Zbl
, ,[17] Computation of centralizers in braid groups and Garside groups, Rev. Mat. Iberoamericana 19 (2003) 367-384. | MR | Zbl
, ,[18] The braid group and other groups, Quart. J. Math. Oxford 20 (1969) 235-254. | MR | Zbl
,[19] A new approach to the conjugacy problem in Garside groups, Preprint, math.GT/0306199. | MR
,[20] Computer implementation of Bestvina-Handel algorithm, available at, http://www.liv.ac.uk/maths/PURE/MIN_SET/CONTENT/members/T_Hall.html.
,[21] Subgroups of Teichmüller Modular Groups, Translations of Mathematical Monographs, vol. 115, AMS, 1992. | MR | Zbl
,[22] Ivanov N.V., Talk at the special session “Mapping class groups and the geometric theory of Teichmüller spaces” at the 974th meeting of the AMS, Ann Harbour, MI, March 1-3, 2002.
[23] Examples of centralizers in the Artin braid groups, Preprint, math.GT/0306418.
,[24] Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Annalen 80 (1919) 3-7. | JFM
,[25] Pseudo-Anosov maps and invariant train tracks in the disc: a finite algorithm, Proc. London Math. Soc. (3) 66 (1993) 400-430. | MR | Zbl
,[26] On normalizers in the braid group, Mat. Sb. 86 (128) (1971) 171-179. | MR | Zbl
,[27] Some subgroups of Artin's braid group. Special issue on braid groups and related topics (Jerusalem, 1995), Topology Appl. 78 (1-2) (1997) 123-142. | MR | Zbl
,[28] Quasipositivity test via unitary representations of braid groups and its applications to real algebraic curves, J. Knot Theory Ramifications 10 (7) (2001) 1005-1023. | MR | Zbl
,[29] Geometric subgroups of surface braid groups, Ann. Inst. Fourier 49 (1999) 101-156. | Numdam | MR | Zbl
, ,[30] Combinatorics of Train Tracks, Annals of Math., vol. 125, Princeton University Press, Princeton, NJ, 1992. | MR | Zbl
, ,[31] Extraction of roots in Garside groups, Comm. Algebra 30 (6) (2002) 2915-2927. | MR | Zbl
,[32] Izv. Akad. Nauk SSSR Ser. Mat. 42 (5) (1978) 1120-1131, 1183. | MR
,[33] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988) 417-431. | MR | Zbl
,[34] Braid Groups, in: , , , , , (Eds.), Word Processing in Groups, Jones and Bartlett Publishers, Boston, MA, 1992, Chapter 9. | MR | Zbl
,- Endomorphisms of Artin groups of type B, Journal of Algebra (2025) | DOI:10.1016/j.jalgebra.2025.03.017
- Braid groups, elliptic curves, and resolving the quartic, Mathematische Annalen, Volume 391 (2025) no. 3, p. 4409 | DOI:10.1007/s00208-024-03029-x
- On the algebraic K-theory of mapping class groups and of the 5 string-braid group of the sphere, Topology and its Applications (2025), p. 109362 | DOI:10.1016/j.topol.2025.109362
- Homomorphisms of commutator subgroups of braid groups with small number of strings, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 33 (2024) no. 1, p. 105 | DOI:10.5802/afst.1763
- Subsymmetric exchanged braids and the Burau matrix, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 154 (2024) no. 1, p. 154 | DOI:10.1017/prm.2023.1
- Presentations of Dehn quandles, Journal of Algebra, Volume 636 (2023), p. 207 | DOI:10.1016/j.jalgebra.2023.08.024
- A New Key Exchange Protocol Based on Infinite Non-Abelian Groups, Security and Communication Networks, Volume 2022 (2022), p. 1 | DOI:10.1155/2022/7942353
- Exchangeability and Non-Conjugacy of Braid Representatives, International Journal of Computational Geometry Applications, Volume 31 (2021) no. 01, p. 39 | DOI:10.1142/s0218195921500047
- Classifying Spaces for the Family of Virtually Cyclic Subgroups of Braid Groups, International Mathematics Research Notices, Volume 2020 (2020) no. 5, p. 1575 | DOI:10.1093/imrn/rny067
- Positive factorizations of symmetric mapping classes, Journal of the Mathematical Society of Japan, Volume 71 (2019) no. 1 | DOI:10.2969/jmsj/78827882
- On the centralizer of generic braids, Journal of Group Theory, Volume 21 (2018) no. 6, p. 973 | DOI:10.1515/jgth-2018-0027
- Automorphism group of the commutator subgroup of the braid group, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 26 (2017) no. 5, p. 1137 | DOI:10.5802/afst.1562
- Automorphisms of braid groups on orientable surfaces, Journal of Knot Theory and Its Ramifications, Volume 25 (2016) no. 05, p. 1650022 | DOI:10.1142/s021821651650022x
- Geometric approaches to braid groups and mapping class groups, Winter Braids Lecture Notes, Volume 2 (2016), p. 1 | DOI:10.5802/wbln.9
- Geometric Techniques in Braid Groups, Extended Abstracts Fall 2012, Volume 1 (2014), p. 51 | DOI:10.1007/978-3-319-05488-9_9
- CLASSIFICATION OF SYMMETRY GROUPS FOR PLANAR -BODY CHOREOGRAPHIES, Forum of Mathematics, Sigma, Volume 1 (2013) | DOI:10.1017/fms.2013.5
- Minimal generating and normally generating sets for the braid and mapping class groups of
, and , Mathematische Zeitschrift, Volume 274 (2013) no. 1-2, p. 667 | DOI:10.1007/s00209-012-1090-0 - Introduction and Statement of the Main Results, The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups (2013), p. 1 | DOI:10.1007/978-3-319-00257-6_1
- Virtually Cyclic Groups: Generalities, Reduction and the Mapping Class Group, The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups (2013), p. 15 | DOI:10.1007/978-3-319-00257-6_2
- Reducible braids and Garside Theory, Algebraic Geometric Topology, Volume 11 (2011) no. 5, p. 2971 | DOI:10.2140/agt.2011.11.2971
- Moduli spaces and braid monodromy types of bidouble covers of the quadric, Geometry Topology, Volume 15 (2011) no. 1, p. 351 | DOI:10.2140/gt.2011.15.351
- Injectivity on the set of conjugacy classes of some monomorphisms between Artin groups, Journal of Algebra, Volume 323 (2010) no. 7, p. 1879 | DOI:10.1016/j.jalgebra.2008.12.013
- Uniqueness of roots up to conjugacy for some affine and finite type Artin groups, Mathematische Zeitschrift, Volume 265 (2010) no. 3, p. 571 | DOI:10.1007/s00209-009-0530-y
- Conjugacy Problem for Subgroups with Applications to Artin Groups and Braid Type Group, Communications in Algebra, Volume 34 (2006) no. 11, p. 4207 | DOI:10.1080/00927870600876375
- Random Subgroups of Braid Groups: An Approach to Cryptanalysis of a Braid Group Based Cryptographic Protocol, Public Key Cryptography - PKC 2006, Volume 3958 (2006), p. 302 | DOI:10.1007/11745853_20
- Braids: A Survey, arXiv (2004) | DOI:10.48550/arxiv.math/0409205 | arXiv:math/0409205
- Thenth root of a braid is unique up to conjugacy, Algebraic Geometric Topology, Volume 3 (2003) no. 2, p. 1103 | DOI:10.2140/agt.2003.3.1103
Cité par 27 documents. Sources : Crossref, NASA ADS