On the structure of the centralizer of a braid
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 37 (2004) no. 5, pp. 729-757.
DOI : 10.1016/j.ansens.2004.04.002
González-Meneses, Juan  ; Wiest, Bert 1

1 Université de Rennes 1, Institut Mathématique, Campus de Beaulieu, 35042 Rennes Cedex (France)
@article{ASENS_2004_4_37_5_729_0,
     author = {Gonz\'alez-Meneses, Juan and Wiest, Bert},
     title = {On the structure of the centralizer of a braid},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {729--757},
     publisher = {Elsevier},
     volume = {Ser. 4, 37},
     number = {5},
     year = {2004},
     doi = {10.1016/j.ansens.2004.04.002},
     mrnumber = {2103472},
     zbl = {1082.20024},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.ansens.2004.04.002/}
}
TY  - JOUR
AU  - González-Meneses, Juan
AU  - Wiest, Bert
TI  - On the structure of the centralizer of a braid
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2004
SP  - 729
EP  - 757
VL  - 37
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.ansens.2004.04.002/
DO  - 10.1016/j.ansens.2004.04.002
LA  - en
ID  - ASENS_2004_4_37_5_729_0
ER  - 
%0 Journal Article
%A González-Meneses, Juan
%A Wiest, Bert
%T On the structure of the centralizer of a braid
%J Annales scientifiques de l'École Normale Supérieure
%D 2004
%P 729-757
%V 37
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.ansens.2004.04.002/
%R 10.1016/j.ansens.2004.04.002
%G en
%F ASENS_2004_4_37_5_729_0
González-Meneses, Juan; Wiest, Bert. On the structure of the centralizer of a braid. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 37 (2004) no. 5, pp. 729-757. doi : 10.1016/j.ansens.2004.04.002. https://www.numdam.org/articles/10.1016/j.ansens.2004.04.002/

[1] Arnold V.I., The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969) 227-231. | MR | Zbl

[2] Benardete D., Gutierrez M., Nitecki Z., A combinatorial approach to reducibility of mapping classes, Contemporary Math. 150 (1993) 1-31. | MR | Zbl

[3] Benardete D., Gutierrez M., Nitecki Z., Braids and the Nielsen-Thurston classification, J. Knot Theory Ramifications 4 (1995) 549-618. | MR | Zbl

[4] Bessis D., Digne F., Michel J., Springer theory in braid groups and the Birman-Ko-Lee monoid, Pacific J. Math. 205 (2) (2002) 287-309. | MR | Zbl

[5] Bestvina M., Haendel M., Train-tracks for surface homeomorphisms, Topology 34 (1995) 109-140. | MR | Zbl

[6] Birman J., Braids, Links, and Mapping Class Groups, Annals of Math. Studies, vol. 82, Princeton University Press, 1975. | MR | Zbl

[7] Birman J., Ko K.H., Lee S.J., A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (1998) 322-353. | MR | Zbl

[8] Birman J., Lubotzky A., Mccarthy J., Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983) 1107-1120. | MR | Zbl

[9] Brinkmann P., An implementation of the Bestvina-Handel algorithm for surface homeomorphisms, Experiment. Math. 9 (2000) 235-240, Computer program available at, http://www.math.uiuc.edu/~brinkman/software/train/. | MR | Zbl

[10] Burde G., Über Normalisatoren der Zopfgruppe, Abh. Math. Sem. Univ. Hamburg 27 (1964) 97-115. | MR | Zbl

[11] Constantin A., Kolev B., The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere, Enseign. Math. (2) 40 (3-4) (1994) 193-204. | MR | Zbl

[12] Eilenberg S., Sur les transformations périodiques de la surface de sphère, Fund. Math. 22 (1934) 28-41. | Zbl

[13] El-Rifai E.A., Morton H.R., Algorithms for positive braids, Quart. J. Math. Oxford Ser. (2) 45 (180) (1994) 479-497. | MR | Zbl

[14] Fathi A., Laudenbach F., Poenaru V., Travaux de Thurston sur les surfaces - séminaire Orsay, Astérisque, vols. 66-67, Société Math. de France, 1991. | Numdam | MR | Zbl

[15] Fenn R., Rolfsen D., Zhu J., Centralisers in the braid group and singular braid monoid, Enseign. Math. 42 (1996) 75-96. | MR | Zbl

[16] Franco N., González-Meneses J., Conjugacy problem for braid groups and Garside groups, J. Algebra 266 (2003) 112-132. | MR | Zbl

[17] Franco N., González-Meneses J., Computation of centralizers in braid groups and Garside groups, Rev. Mat. Iberoamericana 19 (2003) 367-384. | MR | Zbl

[18] Garside F.A., The braid group and other groups, Quart. J. Math. Oxford 20 (1969) 235-254. | MR | Zbl

[19] Gebhardt V., A new approach to the conjugacy problem in Garside groups, Preprint, math.GT/0306199. | MR

[20] Hall T., Computer implementation of Bestvina-Handel algorithm, available at, http://www.liv.ac.uk/maths/PURE/MIN_SET/CONTENT/members/T_Hall.html.

[21] Ivanov N.V., Subgroups of Teichmüller Modular Groups, Translations of Mathematical Monographs, vol. 115, AMS, 1992. | MR | Zbl

[22] Ivanov N.V., Talk at the special session “Mapping class groups and the geometric theory of Teichmüller spaces” at the 974th meeting of the AMS, Ann Harbour, MI, March 1-3, 2002.

[23] Ivanov N.V., Examples of centralizers in the Artin braid groups, Preprint, math.GT/0306418.

[24] De Kerékjártó B., Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Annalen 80 (1919) 3-7. | JFM

[25] Los J., Pseudo-Anosov maps and invariant train tracks in the disc: a finite algorithm, Proc. London Math. Soc. (3) 66 (1993) 400-430. | MR | Zbl

[26] Makanin G.S., On normalizers in the braid group, Mat. Sb. 86 (128) (1971) 171-179. | MR | Zbl

[27] Manfredini S., Some subgroups of Artin's braid group. Special issue on braid groups and related topics (Jerusalem, 1995), Topology Appl. 78 (1-2) (1997) 123-142. | MR | Zbl

[28] Orevkov S.Yu., Quasipositivity test via unitary representations of braid groups and its applications to real algebraic curves, J. Knot Theory Ramifications 10 (7) (2001) 1005-1023. | MR | Zbl

[29] Paris L., Rolfsen D., Geometric subgroups of surface braid groups, Ann. Inst. Fourier 49 (1999) 101-156. | Numdam | MR | Zbl

[30] Penner R.C., Harer J.L., Combinatorics of Train Tracks, Annals of Math., vol. 125, Princeton University Press, Princeton, NJ, 1992. | MR | Zbl

[31] Sibert H., Extraction of roots in Garside groups, Comm. Algebra 30 (6) (2002) 2915-2927. | MR | Zbl

[32] Styšnev V.B., Izv. Akad. Nauk SSSR Ser. Mat. 42 (5) (1978) 1120-1131, 1183. | MR

[33] Thurston W.P., On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988) 417-431. | MR | Zbl

[34] Thurston W.P., Braid Groups, in: Epstein D.B.A., Cannon J.W., Holt D.F., Levy S.V.F., Paterson M.S., Thurston W.P. (Eds.), Word Processing in Groups, Jones and Bartlett Publishers, Boston, MA, 1992, Chapter 9. | MR | Zbl

  • Paris, Luis; Soroko, Ignat Endomorphisms of Artin groups of type B, Journal of Algebra (2025) | DOI:10.1016/j.jalgebra.2025.03.017
  • Huxford, Peter; Schillewaert, Jeroen Braid groups, elliptic curves, and resolving the quartic, Mathematische Annalen, Volume 391 (2025) no. 3, p. 4409 | DOI:10.1007/s00208-024-03029-x
  • Guaschi, John; Juan-Pineda, Daniel On the algebraic K-theory of mapping class groups and of the 5 string-braid group of the sphere, Topology and its Applications (2025), p. 109362 | DOI:10.1016/j.topol.2025.109362
  • Orevkov, Stepan Yu. Homomorphisms of commutator subgroups of braid groups with small number of strings, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 33 (2024) no. 1, p. 105 | DOI:10.5802/afst.1763
  • Stoimenow, Alexander Subsymmetric exchanged braids and the Burau matrix, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 154 (2024) no. 1, p. 154 | DOI:10.1017/prm.2023.1
  • Dhanwani, Neeraj K.; Raundal, Hitesh; Singh, Mahender Presentations of Dehn quandles, Journal of Algebra, Volume 636 (2023), p. 207 | DOI:10.1016/j.jalgebra.2023.08.024
  • Zhang, Jing; Yang, Ya-Juan; Li, Yi-Peng; Xue, Xingsi A New Key Exchange Protocol Based on Infinite Non-Abelian Groups, Security and Communication Networks, Volume 2022 (2022), p. 1 | DOI:10.1155/2022/7942353
  • Stoimenow, Alexander Exchangeability and Non-Conjugacy of Braid Representatives, International Journal of Computational Geometry Applications, Volume 31 (2021) no. 01, p. 39 | DOI:10.1142/s0218195921500047
  • Flores, Ramón; González-Meneses, Juan Classifying Spaces for the Family of Virtually Cyclic Subgroups of Braid Groups, International Mathematics Research Notices, Volume 2020 (2020) no. 5, p. 1575 | DOI:10.1093/imrn/rny067
  • ITO, Tetsuya; KAWAMURO, Keiko Positive factorizations of symmetric mapping classes, Journal of the Mathematical Society of Japan, Volume 71 (2019) no. 1 | DOI:10.2969/jmsj/78827882
  • González-Meneses, Juan; Valladares, Dolores On the centralizer of generic braids, Journal of Group Theory, Volume 21 (2018) no. 6, p. 973 | DOI:10.1515/jgth-2018-0027
  • Orevkov, Stepan Yu. Automorphism group of the commutator subgroup of the braid group, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 26 (2017) no. 5, p. 1137 | DOI:10.5802/afst.1562
  • An, Byung Hee Automorphisms of braid groups on orientable surfaces, Journal of Knot Theory and Its Ramifications, Volume 25 (2016) no. 05, p. 1650022 | DOI:10.1142/s021821651650022x
  • González-Meneses, Juan Geometric approaches to braid groups and mapping class groups, Winter Braids Lecture Notes, Volume 2 (2016), p. 1 | DOI:10.5802/wbln.9
  • González-Meneses, Juan Geometric Techniques in Braid Groups, Extended Abstracts Fall 2012, Volume 1 (2014), p. 51 | DOI:10.1007/978-3-319-05488-9_9
  • MONTALDI, JAMES; STECKLES, KATRINA CLASSIFICATION OF SYMMETRY GROUPS FOR PLANAR -BODY CHOREOGRAPHIES, Forum of Mathematics, Sigma, Volume 1 (2013) | DOI:10.1017/fms.2013.5
  • Gonçalves, Daciberg Lima; Guaschi, John Minimal generating and normally generating sets for the braid and mapping class groups of D2 , S2 and RP2, Mathematische Zeitschrift, Volume 274 (2013) no. 1-2, p. 667 | DOI:10.1007/s00209-012-1090-0
  • Lima Gonçalves, Daciberg; Guaschi, John Introduction and Statement of the Main Results, The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups (2013), p. 1 | DOI:10.1007/978-3-319-00257-6_1
  • Lima Gonçalves, Daciberg; Guaschi, John Virtually Cyclic Groups: Generalities, Reduction and the Mapping Class Group, The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups (2013), p. 15 | DOI:10.1007/978-3-319-00257-6_2
  • González-Meneses, Juan; Wiest, Bert Reducible braids and Garside Theory, Algebraic Geometric Topology, Volume 11 (2011) no. 5, p. 2971 | DOI:10.2140/agt.2011.11.2971
  • Catanese, Fabrizio; Lönne, Michael; Wajnryb, Bronislaw Moduli spaces and braid monodromy types of bidouble covers of the quadric, Geometry Topology, Volume 15 (2011) no. 1, p. 351 | DOI:10.2140/gt.2011.15.351
  • Lee, Eon-Kyung; Lee, Sang-Jin Injectivity on the set of conjugacy classes of some monomorphisms between Artin groups, Journal of Algebra, Volume 323 (2010) no. 7, p. 1879 | DOI:10.1016/j.jalgebra.2008.12.013
  • Lee, Eon-Kyung; Lee, Sang-Jin Uniqueness of roots up to conjugacy for some affine and finite type Artin groups, Mathematische Zeitschrift, Volume 265 (2010) no. 3, p. 571 | DOI:10.1007/s00209-009-0530-y
  • Franco, Nuno Conjugacy Problem for Subgroups with Applications to Artin Groups and Braid Type Group, Communications in Algebra, Volume 34 (2006) no. 11, p. 4207 | DOI:10.1080/00927870600876375
  • Myasnikov, Alexei; Shpilrain, Vladimir; Ushakov, Alexander Random Subgroups of Braid Groups: An Approach to Cryptanalysis of a Braid Group Based Cryptographic Protocol, Public Key Cryptography - PKC 2006, Volume 3958 (2006), p. 302 | DOI:10.1007/11745853_20
  • Birman, Joan S.; Brendle, Tara E. Braids: A Survey, arXiv (2004) | DOI:10.48550/arxiv.math/0409205 | arXiv:math/0409205
  • Gonzalez-Meneses, Juan Thenth root of a braid is unique up to conjugacy, Algebraic Geometric Topology, Volume 3 (2003) no. 2, p. 1103 | DOI:10.2140/agt.2003.3.1103

Cité par 27 documents. Sources : Crossref, NASA ADS