S-unit points on analytic hypersurfaces
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 38 (2005) no. 1, pp. 76-92.
@article{ASENS_2005_4_38_1_76_0,
     author = {Corvaja, Pietro and Zannier, Umberto},
     title = {$S$-unit points on analytic hypersurfaces},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {76--92},
     publisher = {Elsevier},
     volume = {Ser. 4, 38},
     number = {1},
     year = {2005},
     doi = {10.1016/j.ansens.2004.09.003},
     zbl = {02174963},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.ansens.2004.09.003/}
}
TY  - JOUR
AU  - Corvaja, Pietro
AU  - Zannier, Umberto
TI  - $S$-unit points on analytic hypersurfaces
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2005
SP  - 76
EP  - 92
VL  - 38
IS  - 1
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.ansens.2004.09.003/
DO  - 10.1016/j.ansens.2004.09.003
LA  - en
ID  - ASENS_2005_4_38_1_76_0
ER  - 
%0 Journal Article
%A Corvaja, Pietro
%A Zannier, Umberto
%T $S$-unit points on analytic hypersurfaces
%J Annales scientifiques de l'École Normale Supérieure
%D 2005
%P 76-92
%V 38
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.ansens.2004.09.003/
%R 10.1016/j.ansens.2004.09.003
%G en
%F ASENS_2005_4_38_1_76_0
Corvaja, Pietro; Zannier, Umberto. $S$-unit points on analytic hypersurfaces. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 38 (2005) no. 1, pp. 76-92. doi : 10.1016/j.ansens.2004.09.003. https://www.numdam.org/articles/10.1016/j.ansens.2004.09.003/

[1] Bombieri E., Zannier U., Algebraic points on subvarieties of Gmn, Internat. Math. Res. Notices 7 (1995) 333-347. | MR | Zbl

[2] Bombieri E., Zannier U., Heights of algebraic points on subvarieties of abelian varieties, Ann. Scuola Norm Sup. Pisa Cl. Sci. XXIII (4) (1996) 4. | Numdam | MR | Zbl

[3] Corvaja P., Zannier U., Some new applications of the subspace theorem, Compositio Math. 131 (2002) 319-340. | MR | Zbl

[4] Corvaja P., Zannier U., On the diophantine equation f(am,y)=bn, Acta Arith. 94 (1) (2000) 25-40. | MR | Zbl

[5] Laurent M., Équations diophantiennes exponentielles, Inv. Math. 78 (1984) 299-327. | MR | Zbl

[6] Masser D., A vanishing theorem for power series, Inv. Math. 67 (1982) 275-296. | MR | Zbl

[7] Nishioka K., Algebraic independence by Mahler's method and S-unit equations, Compositio Math. 92 (1994) 87-110. | Numdam | MR | Zbl

[8] Schmidt W.M., Heights of points on subvarieties of Gmn, in: David S. (Ed.), Number Theory 1993-1994, Cambridge Univ. Press, LMS, 1996, pp. 199-213. | MR | Zbl

[9] Zannier U., Some Applications of Diophantine Approximation to Diophantine Equations, Editrice Forum, Udine, 2003.

  • Xiao, Zheng Greatest common divisors for polynomials in almost units and applications to linear recurrence sequences, Mathematische Zeitschrift, Volume 306 (2024) no. 4 | DOI:10.1007/s00209-024-03453-4
  • Fuchs, Clemens; Heintze, Sebastian Integral zeros of a polynomial with linear recurrences as coefficients, Indagationes Mathematicae, Volume 32 (2021) no. 3, p. 691 | DOI:10.1016/j.indag.2021.03.001
  • Corvaja, Pietro; Ghioca, Dragos; Scanlon, Thomas; Zannier, Umberto THE DYNAMICAL MORDELL–LANG CONJECTURE FOR ENDOMORPHISMS OF SEMIABELIAN VARIETIES DEFINED OVER FIELDS OF POSITIVE CHARACTERISTIC, Journal of the Institute of Mathematics of Jussieu, Volume 20 (2021) no. 2, p. 669 | DOI:10.1017/s1474748019000318
  • BUGEAUD, YANN; KANEKO, HAJIME On the digital representation of smooth numbers, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 165 (2018) no. 3, p. 533 | DOI:10.1017/s0305004117000640
  • Bennett, Michael A. The polynomial–exponential equation 1+2a+6b=yq 1 + 2 a + 6 b = y q, Periodica Mathematica Hungarica, Volume 75 (2017) no. 2, p. 387 | DOI:10.1007/s10998-017-0208-x
  • BUNDSCHUH, PETER TRANSCENDENCE AND ALGEBRAIC INDEPENDENCE OF SERIES RELATED TO STERN'S SEQUENCE, International Journal of Number Theory, Volume 08 (2012) no. 02, p. 361 | DOI:10.1142/s1793042112500212
  • Fuchs, Clemens Polynomial-exponential equations involving multi-recurrences, Studia Scientiarum Mathematicarum Hungarica, Volume 46 (2009) no. 3, p. 377 | DOI:10.1556/sscmath.2009.1098

Cité par 7 documents. Sources : Crossref