@article{ASENS_2006_4_39_3_415_0, author = {Lysenko, Sergey}, title = {Moduli of metaplectic bundles on curves and theta-sheaves}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {415--466}, publisher = {Elsevier}, volume = {Ser. 4, 39}, number = {3}, year = {2006}, doi = {10.1016/j.ansens.2006.01.003}, mrnumber = {2265675}, zbl = {1111.14029}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.ansens.2006.01.003/} }
TY - JOUR AU - Lysenko, Sergey TI - Moduli of metaplectic bundles on curves and theta-sheaves JO - Annales scientifiques de l'École Normale Supérieure PY - 2006 SP - 415 EP - 466 VL - 39 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.ansens.2006.01.003/ DO - 10.1016/j.ansens.2006.01.003 LA - en ID - ASENS_2006_4_39_3_415_0 ER -
%0 Journal Article %A Lysenko, Sergey %T Moduli of metaplectic bundles on curves and theta-sheaves %J Annales scientifiques de l'École Normale Supérieure %D 2006 %P 415-466 %V 39 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.ansens.2006.01.003/ %R 10.1016/j.ansens.2006.01.003 %G en %F ASENS_2006_4_39_3_415_0
Lysenko, Sergey. Moduli of metaplectic bundles on curves and theta-sheaves. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 39 (2006) no. 3, pp. 415-466. doi : 10.1016/j.ansens.2006.01.003. http://archive.numdam.org/articles/10.1016/j.ansens.2006.01.003/
[1] Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994) 385-419. | MR | Zbl
, ,[2] Un lemme de descente, C. R. Acad. Sci. Paris Série I 320 (1995) 335-340. | MR | Zbl
, ,[3] Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973) 480-497. | Zbl
,[4] Hyperbolic localization of intersection cohomology, Transform. Groups 8 (3) (2003) 209-216. | MR | Zbl
,[5] Geometric Eisenstein series, Invent. Math. 150 (2002) 287-384. | MR | Zbl
, ,[6] Bitorseurs et cohomologie non abélienne, in: The Grothendieck Festschrift, vol. 1, Progress in Math., vol. 86, Birkhäuser, Boston, 1990, pp. 401-476. | MR | Zbl
,[7] Quantization of Hitchin's integrable system and Hecke eigen-sheaves, Available at:, http://www.math.uchicago.edu/~arinkin/langlands/.
, ,[8] Le déterminant de la cohomologie, in: Current Trends in Arithmetical Algebraic Geometry, Arcata, CA, 1985, Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 93-177. | MR | Zbl
,[9] Deligne P., Letter to D. Kazhdan, 6 March 1985.
[10] Tannakian categories, in: Hodge Cycles, Motives and Shimura Varieties, Lecture Notes in Math., vol. 900, Springer, Berlin, 1982. | MR | Zbl
, ,[11] B-structures on G-bundles and local triviality, Math. Res. Letters 2 (1995) 823-829. | MR | Zbl
, ,[12] Algebraic loop groups and moduli spaces of bundles, J. European Math. Soc. 5 (2003) 41-68. | MR | Zbl
,[13] Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math. 144 (2) (2001) 253-280. | MR | Zbl
,[14] Perverse sheaves on a Loop group and Langlands' duality, alg-geom/9511007.
,[15] θ-series and invariant theory, Proc. Sympos. Pure Math., Part 1 33 (1979) 275-285. | Zbl
,[16] Transformation de Fourier homogène, Bull. Soc. Math. France 131 (4) (2003) 527-551. | Numdam | MR | Zbl
,[17] Linearization of group stack actions and the Picard group of the moduli of -bundles on a curve, Bull. Soc. Math. France 125 (4) (1990) 529-545. | Numdam | MR | Zbl
,[18] The Weil Representation, Maslov Index and Theta Series, Progress in Math., vol. 6, Birkhäuser, Boston, 1980. | MR | Zbl
, ,[19] Group extensions of p-adic and adelic linear groups, Publ. IHÉS 35 (1968) 5-70. | Numdam | MR | Zbl
,[20] Geometric Langlands duality and representations of algebraic groups over commutative rings, math.RT/0401222, Ann. Math., in press.
, ,[21] Correspondence de Howe sur un corps p-adique, Lecture Notes in Math., vol. 1291, Springer, Berlin, 1987. | MR | Zbl
, , ,[22] Weil Representation, Howe duality, and the Theta correspondence, (lectures given in Montreal), http://www.mri.ernet.in/mathweb/dprasad.html. | Zbl
,[23] Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964) 143-211. | MR | Zbl
,Cité par Sources :