@article{ASENS_2007_4_40_2_251_0, author = {B\'eguin, Fran\c{c}ois and Crovisier, Sylvain and Le Roux, Fr\'ed\'eric}, title = {Construction of curious minimal uniquely ergodic homeomorphisms on manifolds : the {Denjoy-Rees} technique}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {251--308}, publisher = {Elsevier}, volume = {Ser. 4, 40}, number = {2}, year = {2007}, doi = {10.1016/j.ansens.2007.01.001}, zbl = {1132.37003}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.ansens.2007.01.001/} }
TY - JOUR AU - Béguin, François AU - Crovisier, Sylvain AU - Le Roux, Frédéric TI - Construction of curious minimal uniquely ergodic homeomorphisms on manifolds : the Denjoy-Rees technique JO - Annales scientifiques de l'École Normale Supérieure PY - 2007 SP - 251 EP - 308 VL - 40 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.ansens.2007.01.001/ DO - 10.1016/j.ansens.2007.01.001 LA - en ID - ASENS_2007_4_40_2_251_0 ER -
%0 Journal Article %A Béguin, François %A Crovisier, Sylvain %A Le Roux, Frédéric %T Construction of curious minimal uniquely ergodic homeomorphisms on manifolds : the Denjoy-Rees technique %J Annales scientifiques de l'École Normale Supérieure %D 2007 %P 251-308 %V 40 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.ansens.2007.01.001/ %R 10.1016/j.ansens.2007.01.001 %G en %F ASENS_2007_4_40_2_251_0
Béguin, François; Crovisier, Sylvain; Le Roux, Frédéric. Construction of curious minimal uniquely ergodic homeomorphisms on manifolds : the Denjoy-Rees technique. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 40 (2007) no. 2, pp. 251-308. doi : 10.1016/j.ansens.2007.01.001. http://archive.numdam.org/articles/10.1016/j.ansens.2007.01.001/
[1] New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans. Moscow Math. Soc. 23 (1970) 1-35. | MR | Zbl
, ,[2] Pseudo-rotations of the closed annulus: variation on a theorem of J. Kwapisz, Nonlinearity 17 (4) (2004) 1427-1453. | MR | Zbl
, , , ,[3] Pseudo-rotations of the open annulus: variation on a theorem of J. Kwapisz, Bull. Braz. Math. Soc. (N.S.) 37 (2006) 275-306. | MR | Zbl
, , ,[4] Béguin F., Crovisier S., Jaeger T., Le Roux F., Denjoy constructions for fibered homeomorphism of the two-torus, in preparation.
[5] Tame Cantor sets in , Pacific J. Math. 11 (1961) 435-446. | MR | Zbl
,[6] The Geometric Topology of 3-Manifolds, American Mathematical Society Colloquium Publications, vol. 40, American Mathematical Society, Providence, RI, 1983. | MR | Zbl
,[7] A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960) 74-76. | MR | Zbl
,[8] Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl. Ser. IX 11 (1932) 333-375. | Numdam | Zbl
,[9] Ergodic Theory on Compact Spaces, Springer Lecture Notes in Math., vol. 527, Springer-Verlag, Berlin/New York, 1976. | MR | Zbl
, , ,[10] Existence de difféomorphismes minimaux, in: Dynamical Systems, vol. I, Warsaw, Astérisque, vol. 49, Soc. Math. France, Paris, 1977, 37-59. | Numdam | Zbl
, ,[11] Constructions in elliptic dynamics, Ergodic Theory Dynam. Systems 24 (5) (2004) 1477-1520. | MR | Zbl
, ,[12] A pathological area preserving diffeomorphism of the plane, Proc. Amer. Math. Soc. 86 (1) (1982) 163-168. | MR | Zbl
,[13] Construction d'un difféomorphisme minimal d'entropie topologique non-nulle, Ergodic Theory Dynam. Systems 1 (1981) 65-76. | MR | Zbl
,[14] Construction of some curious diffeomorphisms of the Riemann sphere, J. London Math. Soc. (2) 34 (2) (1986) 375-384. | MR | Zbl
,[15] On tame imbedding of 0-dimensional compact sets in , Yokohama Math. J. 7 (1959) 191-195. | MR | Zbl
,[16] Towards a classification for quasi-periodically forced circle homeomorphisms, J. London Math. Soc. 73 (2006) 727-744. | MR | Zbl
, ,[17] Lyapounov exponents, entropy and periodic orbits for diffeomorphisms, Publications Mathématiques de l'I.H.É.S. 51 (1980) 131-173. | Numdam | MR | Zbl
,[18] Rotation numbers in the infinite annulus, Proc. Amer. Math. Soc. 129 (11) (2001) 3221-3230. | MR | Zbl
,[19] Measure-preserving homeomorphisms of the torus represent all finite entropy ergodic transformations, Math. Systems Theory 11 (3) (1977/78) 275-282. | MR | Zbl
, ,[20] Embedding Cantor sets in a manifold. I. Tame Cantor sets in , Michigan Math. J. 13 (1966) 57-63. | MR | Zbl
,[21] Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2) 42 (1941) 874-920. | MR | Zbl
, ,[22] A minimal positive entropy homeomorphism of the 2-torus, J. London Math. Soc. 23 (1981) 537-550. | MR | Zbl
,[23] Extending maps of a Cantor set product with an arc to near homeomorphisms of the 2-disk, Pacific J. Math. 192 (2) (2000) 369-384. | MR | Zbl
, ,[24] Entropy, isomorphisms and equivalence, in: , (Eds.), Handbook of Dynamical Systems, vol. 1A, Elsevier, Amsterdam, 2002. | MR | Zbl
,Cited by Sources: