Sheaves of bounded p-adic logarithmic differential forms
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 40 (2007) no. 3, p. 351-386
@article{ASENS_2007_4_40_3_351_0,
     author = {Grosse-Kl\"onne, Elmar},
     title = {Sheaves of bounded $p$-adic logarithmic differential forms},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Elsevier},
     volume = {Ser. 4, 40},
     number = {3},
     year = {2007},
     pages = {351-386},
     doi = {10.1016/j.ansens.2007.04.001},
     zbl = {pre05219869},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_2007_4_40_3_351_0}
}
Grosse-Klönne, Elmar. Sheaves of bounded $p$-adic logarithmic differential forms. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 40 (2007) no. 3, pp. 351-386. doi : 10.1016/j.ansens.2007.04.001. http://www.numdam.org/item/ASENS_2007_4_40_3_351_0/

[1] Alon G., De Shalit E., On the cohomology of Drinfel'd's p-adic symmetric domain, Israel J. Math. 129 (2002) 1-20. | MR 1910929 | Zbl 1060.14026

[2] Breuil C., Invariant L et série spéciale p-adique, Ann. Sci. École Norm. Sup. (4) 37 (4) (2004) 559-610. | Numdam | MR 2097893 | Zbl pre02165093

[3] De Shalit E., Residues on buildings and de Rham cohomology of p-adic symmetric domains, Duke Math. J. 106 (1) (2001) 123-191. | MR 1810368 | Zbl 1103.14010

[4] Grosse-Klönne E., Acyclic coefficient systems on buildings, Compositio Math. 141 (2005) 769-786. | MR 2135528 | Zbl pre02183040

[5] Grosse-Klönne E., Integral structures in the p-adic holomorphic discrete series, Representation Theory 9 (2005) 354-384. | MR 2133764 | Zbl 1068.14025

[6] Grosse-Klönne E., Frobenius and monodromy operators in rigid analysis, and Drinfel'd's symmetric space, J. Algebraic Geom. 14 (2005) 391-437. | MR 2129006 | Zbl 1084.14021

[7] Grosse-Klönne E., Integral structures in automorphic line bundles on the p-adic upper half plane, Math. Ann. 329 (2004) 463-493. | MR 2127986 | Zbl 1087.11029

[8] Humphreys J.E., Introduction to Lie Algebras and Representation Theory, Springer, Berlin-Heidelberg-New York, 1972. | Zbl 0254.17004

[9] Illusie L., Réduction semi-stable ordinaire, cohomologie étale p-adique et cohomologie de de Rham d'après Bloch-Kato et Hyodo, in: Astérisque, vol. 223, SMF, Paris, 1994, pp. 209-220. | Zbl 1043.11532

[10] Iovita A., Spiess M., Logarithmic differential forms on p-adic symmetric spaces, Duke Math. J. 110 (2) (2001) 253-278. | MR 1865241 | Zbl 1100.14505

[11] Ito T., Weight-monodromy conjecture for p-adically uniformized varieties, Invent. Math. 159 (3) (2005) 607-656. | MR 2125735 | Zbl pre02156033

[12] Jantzen J.C., Representations of Algebraic Groups, Academic Press, Boston, 1987. | MR 899071 | Zbl 0654.20039

[13] Kiehl R., Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie, Invent. Math. 2 (1967) 256-273. | MR 210949 | Zbl 0202.20201

[14] Mustafin G.A., Non-Archimedean uniformization, Math. USSR Sbornik 34 (1987) 187-214. | Zbl 0411.14006

[15] Rapoport M., Zink T., Period Spaces for p-Divisible Groups, Ann. Math. Studies, vol. 141, Princeton Univ. Press, 1996. | MR 1393439 | Zbl 0873.14039

[16] Schneider P., The cohomology of local systems on p-adically uniformized varieties, Math. Ann. 293 (1992) 623-650. | MR 1176024 | Zbl 0774.14022

[17] Schneider P., Teitelbaum J., p-adic boundary values, in: Cohomologies p-adiques et applications arithmétiques, I, Astérisque, vol. 278, 2002, pp. 51-125. | MR 1922824 | Zbl 1051.14024