[Topologie à grande échelle, agrandissabilité et non-annulation en homologie]
En utilisant des méthodes de topologie à grande échelle, on prouve que les classes fondamentales des variétés agrandissables ne s’annulent pas, ni dans l’homologie rationnelle de leurs groupes fondamentaux, ni dans la
Using methods from coarse topology we show that fundamental classes of closed enlargeable manifolds map non-trivially both to the rational homology of their fundamental groups and to the
@article{ASENS_2008_4_41_3_473_0, author = {Hanke, Bernhard and Kotschick, Dieter and Roe, John and Schick, Thomas}, title = {Coarse topology, enlargeability, and essentialness}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {473--495}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 41}, number = {3}, year = {2008}, doi = {10.24033/asens.2073}, mrnumber = {2482205}, zbl = {1169.53032}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2073/} }
TY - JOUR AU - Hanke, Bernhard AU - Kotschick, Dieter AU - Roe, John AU - Schick, Thomas TI - Coarse topology, enlargeability, and essentialness JO - Annales scientifiques de l'École Normale Supérieure PY - 2008 SP - 473 EP - 495 VL - 41 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2073/ DO - 10.24033/asens.2073 LA - en ID - ASENS_2008_4_41_3_473_0 ER -
%0 Journal Article %A Hanke, Bernhard %A Kotschick, Dieter %A Roe, John %A Schick, Thomas %T Coarse topology, enlargeability, and essentialness %J Annales scientifiques de l'École Normale Supérieure %D 2008 %P 473-495 %V 41 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2073/ %R 10.24033/asens.2073 %G en %F ASENS_2008_4_41_3_473_0
Hanke, Bernhard; Kotschick, Dieter; Roe, John; Schick, Thomas. Coarse topology, enlargeability, and essentialness. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 41 (2008) no. 3, pp. 473-495. doi : 10.24033/asens.2073. https://www.numdam.org/articles/10.24033/asens.2073/
[1] Elliptic operators, discrete groups and von Neumann algebras, in Colloque “Analyse et Topologie” en l'honneur de Henri Cartan (Orsay, 1974), Astérisque 32-33, 1976, 43-72. | Numdam | MR | Zbl
,
[2] Classifying space for proper actions and
[3]
[4] Aperiodic tilings, positive scalar curvature and amenability of spaces, J. Amer. Math. Soc. 5 (1992), 907-918. | Zbl
& ,
[5] Atiyah’s
[6] On hypersphericity of manifolds with finite asymptotic dimension, Trans. Amer. Math. Soc. 355 (2003), 155-167. | MR | Zbl
,[7] Remarks on a conjecture of Gromov and Lawson, in High-dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, 159-176. | Zbl
, & ,[8] Volume growth and positive scalar curvature, Geom. Funct. Anal. 10 (2000), 821-828. | Zbl
& ,[9] Volume and bounded cohomology, Publ. Math. I.H.É.S. 56 (1982), 5-99 (1983). | Numdam | MR | Zbl
,[10] Large Riemannian manifolds, in Curvature and topology of Riemannian manifolds (Katata, 1985), Lecture Notes in Math. 1201, Springer, 1986, 108-121. | MR | Zbl
,[11] Asymptotic invariants of infinite groups, in Geometric group theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press, 1993, 1-295. | MR | Zbl
,[12] Positive curvature, macroscopic dimension, spectral gaps and higher signatures, in Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993), Progr. Math. 132, Birkhäuser, 1996, 1-213. | MR | Zbl
,[13] Spin and scalar curvature in the presence of a fundamental group. I, Ann. of Math. 111 (1980), 209-230. | Zbl
& ,[14] Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. I.H.É.S. 58 (1983), 83-196. | Numdam | Zbl
& ,[15] Enlargeability and index theory, J. Differential Geom. 74 (2006), 293-320. | Zbl
& ,
[16] Enlargeability and index theory: infinite covers,
[17]
[18] Analytic
[19] Generalized homology theories on compact metric spaces, Michigan Math. J. 24 (1977), 203-224. | Zbl
, & ,
[20]
[21] On the Steenrod homology theory, in Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press, 1995, 79-96. | MR | Zbl
,[22] Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics 90, American Math. Soc., 1996. | MR | Zbl
,[23] Comparing analytic assembly maps, Q. J. Math. 53 (2002), 241-248. | MR | Zbl
,[24] Lectures on coarse geometry, University Lecture Series 31, American Math. Soc., 2003. | MR | Zbl
,[25] A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture, Topology 37 (1998), 1165-1168. | MR | Zbl
,[26] Group actions on manifolds, Contemporary Mathematics 36, Amer. Math. Soc., 1985. | MR | Zbl
(éd.),[27] Manifolds of positive scalar curvature, in Topology of high-dimensional manifolds, No. 1, 2 (Trieste, 2001), ICTP Lect. Notes 9, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002, 661-709. | MR | Zbl
,
[28]
[29] The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000), 201-240. | MR | Zbl
,Cité par Sources :